Lebesgue measure

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 08 июн 2008, 14:20

$$ \mu B = 0 \Rightarrow \forall \varepsilon \exists \{ E_n \}_{n=1}^{\infty},E_n \in E,E\in G,B \subset \cup_{n=1}^{\infty}E_n,\sum_{n=1}^{\infty}\mu E_n < \varepsilon $$

$$ B \subset \cup_{n=1}^{\infty}E_n $$
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Gaudeamus
Сообщений: 20
Зарегистрирован: 27 дек 2007, 21:00

Lebesgue measure

Сообщение Gaudeamus » 08 июн 2008, 14:59

Draeden писал(а):Source of the post
$$ \mu B = 0 \Rightarrow \forall \varepsilon \exists \{ E_n \}_{n=1}^{\infty},E_n \in E,E\in G,B \subset \cup_{n=1}^{\infty}E_n,\sum_{n=1}^{\infty}\mu E_n < \varepsilon $$

$$ B \subset \cup_{n=1}^{\infty}E_n $$

$$B \in M$$? M - измеримое мн-во
Последний раз редактировалось Gaudeamus 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 08 июн 2008, 15:11

Since $$ B = \bigcup_{n=1}^{\infty}(B \cap E_n) $$ assume $$ A_n = B \cap E_n $$ and prove that $$ A_n \in M_F $$.
As $$ A_n \subset E_n $$ and $$ E_n \in {\mathbb G} \cap {\mathbb E} $$ we can write, that $$ A_n \bigtriangleup E_n \subset E_n $$, but the last one has small measure: $$ \mu ^* E_n < \varepsilon $$.
That results in $$ \forall \varepsilon \mu^*(A_n \bigtriangleup E_n) < \varepsilon $$.
Therefore, it's proved that $$ A_n \in M_F $$, but $$ B = \bigcup_{n=1}^{\infty} A_n $$ i.e. $$ B \in {\mathbb M} $$.
Q.E.D.
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Gaudeamus
Сообщений: 20
Зарегистрирован: 27 дек 2007, 21:00

Lebesgue measure

Сообщение Gaudeamus » 08 июн 2008, 15:39

Draeden писал(а):Source of the post $$ \forall \varepsilon \mu^*(A_n \bigtriangleup E_n) < \varepsilon $$
As I understand, $$A_n$$ depends on $$\varepsilon$$.
Последний раз редактировалось Gaudeamus 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 08 июн 2008, 15:43

You're right. You'd like a proof of lebesgue measurability without that ?
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Gaudeamus
Сообщений: 20
Зарегистрирован: 27 дек 2007, 21:00

Lebesgue measure

Сообщение Gaudeamus » 08 июн 2008, 15:55

Draeden писал(а):Source of the post
You're right. You'd like a proof of lebesgue measurability without that ?

I think it's not correct. You look over only one $$\epsilon$$
Последний раз редактировалось Gaudeamus 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 09 июн 2008, 12:52

$$ G \in \mathbb{G}(\mathbb{R}^m) \\ I:G \to \mathbb{E \cap \mathbb{G}} \\ a \in I(a) \subset G $$

therefore

$$ G \subset \bigcup_{a \in \mathbb{Q}^m \cap G} I(a) $$

$$ \bigcup_{a \in \mathbb{Q}^m \cap G} I(a) \subset G $$

it's clearly, that $$ \mathbb{Q}^m \cap G $$ is countable.
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 11 июн 2008, 06:34

Theorem

$$ A \in \mathbb{M}_F \Rightarrow \forall \varepsilon \exists G \in \mathbb{G}, A \subset G, \mu ( G \setminus A ) < \varepsilon $$

Original proof

$$ A \in \mathbb{M}_F \Rightarrow \forall \varepsilon \exists E \in \mathbb{E}, \mu ( A \bigtriangleup E ) < \varepsilon $$

$$ \mu ( A \bigtriangleup E ) < \varepsilon \Rightarrow \exists \{ E_n \}_{n=1}^{\infty}, E_n \in \mathbb{G \cap E}, A \bigtriangleup E \subset \bigcup_{n=1}^{\infty}E_n, \sum_{n=1}^{\infty}m(E_n) < \varepsilon $$

$$ \exists E&#39; \in \mathbb{G \cap E}, E \subset E&#39;, m(E&#39;\setminus E) < \varepsilon $$

$$ G = \bigcup_{n=1}^{\infty}E_n \cup E&#39; \in \mathbb{G} \Rightarrow A \subset G, \mu ( G \setminus A ) \le \mu ( E&#39; \setminus E ) + \mu \bigcup_{n=1}^{\infty}E_n < 2\varepsilon $$

My proof

$$ A \in \mathbb{M}_F \Rightarrow \mu(A) < \infty \Rightarrow \forall \varepsilon \exists \{ E_n \}_{n=1}^{\infty}, E_n \in \mathbb{G \cap E}, A \subset \bigcup_{n=1}^{\infty}E_n, \sum_{n=1}^{\infty}m(E_n) < \mu(A) + \varepsilon $$

$$ G = \bigcup_{n=1}^{\infty}E_n \in \mathbb{G} \Rightarrow \mu(G \setminus A )  < \varepsilon $$

where's mistake ?
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Draeden
Сообщений: 1613
Зарегистрирован: 24 ноя 2007, 21:00

Lebesgue measure

Сообщение Draeden » 11 июн 2008, 06:53

Integral

$$ \int_{-\infty}^{+\infty} \frac{sin x}x dx = Im \left( \int_{-\infty}^{+\infty} \frac{e^{ix}}x dx \right) = Im \left( \lim_{a \to 0} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x-a} dx \right) $$

then, if Im a > 0, the integral equals to

$$ 2\pi i \cdot res_a \left( \frac{e^{ix}}{x-a} \right ) = 2\pi i \cdot e^{ia} \to^{a \to 0} 2\pi i $$

$$ \int_{-\infty}^{+\infty} \frac{sin x}x dx = 2 \pi $$

if Im a < 0, the integral is zero ( since $$ e^{ix} = e^{i \alpha x}, \alpha > 0 $$ )

and, at last, if Im a changes its sign while approaching to 0, the limit doesn't exist.

where's mistake ?
Последний раз редактировалось Draeden 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test

Gaudeamus
Сообщений: 20
Зарегистрирован: 27 дек 2007, 21:00

Lebesgue measure

Сообщение Gaudeamus » 11 июн 2008, 08:07

Док-во вроде правильное.
Ha счет интеграла - поясни 2-e равенство.
Последний раз редактировалось Gaudeamus 30 ноя 2019, 12:29, всего редактировалось 1 раз.
Причина: test


Вернуться в «Математический анализ»

Кто сейчас на форуме

Количество пользователей, которые сейчас просматривают этот форум: нет зарегистрированных пользователей и 9 гостей