Problem 1. Assume that f : (1,00) — R is continuous and bounded.
Prove that there exists a sequence {x,} such that

lim z,= 400 and lim (f (z,+2021) —f (x,)) =0

n—o0 n—o0

Solution.

Let g(z) =f(24+2021)—f(z). Then there are two possibilities. (1) There
exists xo>1 such that g(z) is positive (or negative) for all x>z,. (2) There
is no such xzg.

In case (1), if, for example, ¢ is positive on (xy,00), then the sequence
{f (zp+2021n)} is monotonically increasing. Since f is bounded, the follow-
ing limit exists and is finite:

lim f(zo+2021n)= lim f (xo+2021(n+ 1)) = lim f (zo+2021n + 2021)
n—00 n—00 n—0o0

Therefore, one can take x,=x¢+2021n.
In case (2), by the intermediate value property of g, for every positive
integer n>1 there is z,,>n such that g (z,)=0



Problem 2. A natural number n is given. For which k£ € {1,2,... n}
does a square matrix A of order n with integer elements exist such that all
minors of order k (that is, determinants of matrices obtained from A deleting
n — k rows and n — k columns) are odd?

Solution.

Answer: For k=1,n—1,n.

Examples:

i) k =1 is a matrix of all 1;

ii) k = n is the identity matrix;

iii) k =n —1 — add a row and a column to the identity matrix of order
n — 1 so that the sum in each row and in each column is even.

Suppose that such a matrix is found for £ > 2 and n > k + 2. Let’s
focus on the k x (k + 2) submatrix. Let’s denote its columns fi,..., fri2
and consider them as vectors over a field of two elements. Any k of them
are linearly independent, because the corresponding determinant is equal to
1(mod 2) (i.e. odd). But any k+1 are linearly dependent, which means that
the dependence is that the sum of these k + 1 vectors is 0. Thus, each of the
vectors fri1, freo is equal to f; + ...+ fr. But this contradicts the linear
independence of the vectors fs, ..., frio.



Problem 3. For any positive a, b prove the inequality

2 2
(a+1) In (b+1) S 2

1
" 4 4b 2(a+b)

Solution.

In @ LW In Zbl)Q —n (1 - (3132) In (1 - <

(a+1(b+1)



Problem 4. Let
00 (_1)k(n+1)

2k + 1)nt+1

Ay = 2
k—O(

Prove that the sequence {an "1o0 | is strictly decreasing.
Solution.
For any n € N, prove the inequality al™ > a%ﬁ?“ which is equivalent
to the following one
n+1 > an+l

Let n is odd. In this case, one has

1 1
an:2(1+3n+1+5n+1+...) > 2,

> —1)k . .
Ups1 =2 Z W <2 (Leibnitz series).
k=0

Hence,
n+1 n+1 n
ap,” >2" > 2" >ap .

Let n is even. Then

_o ] 1 1 1 5 (1 1
n = ~ 3gntl + Entl  7n+l o) > C g+l )

Using the Bernoulli inequality, one obtains

1\ n+1 8
n+1 n+1 _ n+1 _ n+l =
a, > 2 (1 3n+1) >2 (1 3n+1) > 2 9

One has

- 1
an+1:2z 2k+1n+2: <1+ZW>
il

k=

Let us estimate the obtained series:

—+00

i 1 - / a1
2k + 1) T ) (2t 1) 2(n+ 1)
- 0

Consequently,

n -+

1 n 1 2n
< (1+—) <of(1+— 2"\ /e < 23,
<2 (10 ) <7y (1eg) <zviend
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Thus, it is sufficient to show that
n+1 8 n

This inequality is equivalent to the following evident inequality

1
§6> 3 & 256 > 243.

Thus, we proved the inequality for even n also.



Problem 5. Evaluate the integral

e—1
/ lir+n log(x + log(x + log(x + .. .log(x + logx) . ..))) dz.
N—+00 \ 4
1 n &es
Here log(z) = In(x).
Solution.

Let’s consider the sequence

yn(z) = log(z + log(z + log(z + .. .log(z +logx)...))), 1<x<l—e, n=123,...

n times

all elements of which are defined correctly due to the fact that logt € [0; +00)
for any ¢ € [1; +00) and take values from [0; +00) in view of this fact. Since
the sequence y,(x) is monotonically increasing,

Yn(x) = log(x + log(x + log(z + ... log(z +log z) ... ))) <

Vv
n times

< log(x + log(z + log(x + .. . log(z + logj;(:p +logx))...))) = yYns1(x),

~~

n times
Vo € [l;e — 1], n=123,...,

and is bounded from above,

Yn(x) = log(x + log(x + log(z + ... log(z +log x) ... ))) <

Vv
n times

<log(e —1+1log(e —1+log(e —1+...log(e — 1 +1loge)...))) =1,
nt\i;nes

Vr € [l;e —1], n=123,...,

so the function

y(z) = lim log(x + log(z + log(x + ...log(x +logz)...)))

n—-+00

vV
n times

is defined for any = € [1; e — 1] by virtue of Weierstrass theorem, y(z) € [0;1]
for any = € [1;e — 1] and the following identity takes place,

y(r) = lim y,(z) = lim log(z + y,_1(z)) = log(x + lim vy, 1(x)) =
n——+00 n—+4-00 n—r+o0

=log(z+y(z)) = y(x)=log(z+y(x)), Veel;e—1].

6

Y



It follows from this identity that the function y(x) takes any its value for one
only value of the variable x,

z = e’ —y(z).

Thus, the inverse function x = z(y) = €Y — y for the function y = y(z),
1 < z < e— 1 is strictly increasing (since z'(y) = ¢ — 1 > 0 for any
y € (0;1]), z(0) = 1 and x(1) = e — 1. Taking into account that for any
continuous strictly increasing function f : [a;b] — [¢;d], a > 0, ¢ > 0, the
following equality is geometrically obvious,

b f(b)
[ @ [ 5wy =bro) - af(a)
a f(a)
we have that

/y<l’>d$:(6—1)-1—1-0—/(ey_y)dy:e—1_(ey_y_>’1:

1 0



Problem 6.

Let (a,)%2, be a sequence of positive real numbers satisfying lim,, o, a, =
0. Find a continuous function f : (0, +00) — (0,+00) (or prove that it does
not exist) such that for all z > 0

lim f,(x) =0 and lim fn(2) = 400

n— oo n—oo (U,
where f, is defined by f; = f and f, = fo f,_1 forn > 2.

Solution.

Let d = (d,)22, be a decreasing sequence of positive real numbers with
lim,, , d, = 0 and satisfying lim,, ., Z—: = +oo and dy1 > ;5d, for all
n € N. Then, by induction, we have dy i, > 7-d,. Let us define f as
f(d,) = dyyq for all n € N, f linear on [d,,11,d,] and constant on [d;, +00).
We show that f has the desired property. In fact, for any z > 0 we have
fi(x) = f(x) < d; and since f is increasing on (0, d;) we have (by induction)
fa(z) < d,, — 0. Moreover, for every x > 0 there exists m € N such that
x > dp,. Then, again by monotonicity of f, f.(x) > d;y4n, and therefore

fn($)>dm+n:dm+n%> n .dn
a, —  ap dy ap — n+m ay

It remains to construct a sequence d with the above properties. Let us
denote b, = sup{ay : k > n}. Then the sequence (b,)>, is nonincreasing,
b, > a, for every n € N and lim,_, b, = limsup,,_,. a, = 0. Further, we
define ¢, = v/b, + £. The sequence (¢,);2, is decreasing, converges to zero
and

1
- > = — — +o0.

an — b Vb,

We define d; = ¢; and for n > 2
—1
d,, = max {cn, n—dn_l} .
n

Then d,, > ¢,, hence lim,,_,» Z—z = +00 and we have dp1 > 5 d,. We show
that d is decreasing with limit zero. We either have d,, = ”T’ldn_l < d,_1 or
d, = ¢, < ¢,_1 < d,_1. Hence, d is decreasing. Further, we either have a
subsequence d,, where d,, = c,,. Then limy_, d,, = lim_c,, = 0 and
due to monotonicity lim, _,, d, = 0. Or, there exists ng such that for all
n > ng we have d,, = "T’ldn,l. Hence, d, = "2d,, — 0.




Problem 7.

Has the equation y” + 22 (/)® (2+sin(z —y)) = 0 a non-constant solution
defined in a neighborhood of co and having a finite non-zero limit as + — oo?

Solution.

We will prove the existence of a strictly monotonic solution with a finite
non-zero limit as x — 0o. Let z(t) be the inverse function of such a solution:
z(y(x)) =z, t =y(2(t)). Then

1=y'(2(1) - £(),

0=y"(z(t)) - 2(t)° +y/'(2(1)) - £(1),

UMDY 2 2
S (2 SnG0) —yO) 20° +

Z(t)
0= —2(t)*(2 +sin(z(t) — t)) + 2(t),

~—

0=—

whence 2 = (2 4 sin(z — t)) 2% = p(t,2)2? with the Lipschitz continuous
function p(t, z) satisfying 1 < p(t, z) < 3.

Consider the maximally extended solution to the last equation with the
initial data z(0) =7, 2(0) = 13.

Consider also the solution w(t) = 6(t — 1)72, t < 1, to the equation
W = w? and note that w(0) =6 < 7, w(0) = 12 < 13.

Both z and w are positive and strictly increasing for ¢ > 0 in their do-
mains.

Moreover, for these t we have w(t) < z(t) and w(t) < 2(t). Indeed, if not
so, then let ¢; > 0 be the minimal ¢ breaking one of these inequalities. Then
they are satisfied on [0;¢;) and

z@):7+/mz@dﬁ>6+/ﬁw@ﬁﬁ:w@¢
z@g:1&+/hmu4wp@fﬁ>12+/ﬁw@%ﬁ:w@m

which contradicts to the choice of ¢;.

Note that w(t) — oo as ¢ — 1. Hence either the same is for z(¢) or the
right boundary point ¢, > 0 of the domain of z is less than 1.

If lim; ¢, 2(t) < oo, then Z = p(t,2(t))z(¢)? is bounded and therefore 2
also has a finite limit, which makes z(¢) extensible to the right of ¢.. So,
2(t) — oo as t — t.. The inverse function of z(t) can be defined at least on
[7,00) and tends to t, € (0;1] at infinity.



