Теплопроводность фракталов

peregoudov
Сообщений: 523
Зарегистрирован: 29 дек 2015, 13:17

Теплопроводность фракталов

Сообщение peregoudov » 11 июл 2019, 13:33

Копировал я когда-то сюда замечательную тему, в которой обсуждался расчет коэффициентов отражения/прохождения для фрактального потенциала. А вот можно ли придумать какую-то разумную постановку задачи для уравнения теплопроводности для фрактальной среды? Скажем, есть сплошная стенка из какого-то материала и есть ее тепловое сопротивление (отношение разности температур на сторонах к потоку тепла через квадратный метр). А теперь есть стенка из фрактального материала (как его задать?) и нужно определить ее тепловое сопротивление.

zykov
Сообщений: 1005
Зарегистрирован: 06 янв 2016, 17:41

Теплопроводность фракталов

Сообщение zykov » 11 июл 2019, 14:59

peregoudov писал(а):Source of the post из фрактального материала

А что это такое?
Я знаю только фрактал, как математическую абстракцию.

peregoudov
Сообщений: 523
Зарегистрирован: 29 дек 2015, 13:17

Теплопроводность фракталов

Сообщение peregoudov » 11 июл 2019, 15:42

Так в этом и вопрос. Вот как строился потенциал в той задаче? Берем сплошной постоянный потенциал на отрезке и вырезаем из него среднюю треть. Потом из оставшихся третей снова вырезаем средние трети и т. д. Вот и со средой мыслится что-то похожее, но что точно --- сказать не могу. В этом и вопрос: можно ли тут что-то осмысленное придумать?

peregoudov
Сообщений: 523
Зарегистрирован: 29 дек 2015, 13:17

Теплопроводность фракталов

Сообщение peregoudov » 01 авг 2019, 13:57

Вот такая идея пришла в голову. Пусть у нас есть квадрат [0,1]x[0,1]. Сделаем в нем разрез (2/3,0)-(2/3,2/3), то есть на 2/3 от длины стороны и на 1/3 отступив от угла. Теперь у нас образовался "угол" (0,1)-(1,1)-(1,0)-(2/3,0)-(2/3,2/3)-(0,2/3)-cycle и меньший квадрат [0,2/3]x[0,2/3]. Продолжим с ним разрезание аналогично, только повернувшись на 90 градусов против часовой стрелки, то есть разрежем по (2/3,4/9)-(2/9,4/9). И так далее. На рисунке показан результат первых четырех разрезаний.

Изображение

Поставим задачу для уравнения теплопроводности, считая стороны квадрата и разрезы адиабатическими, а источник возьмем дипольный (исток и сток рядом друг с другом). Тогда задача сводится к построению аналитической функции, мнимая часть которой обращается в нуль на границе, а сама функция имеет простой полюс в заданной точке.

Для областей с границей в виде ломаной есть интеграл Шварца---Кристоффеля, осуществляющий конформное отображение области на верхнюю полуплоскость. Решение задачи в полуплоскости строится тривиально методом отражений. Остается найти предел конформного отображения при числе разрезаний, стремящемся к бесконечности.

То есть объект, для которого нужно составить функциональное уравнение, аналогичное (?) функциональному уравнению для коэффициента прохождения в цитированной выше задаче, это конформное преобразование.

AlikAnink
Сообщений: 2
Зарегистрирован: 06 окт 2019, 00:59

Теплопроводность фракталов

Сообщение AlikAnink » 31 окт 2019, 02:19

Я знаю сайт с ответами на интересующей Вас вопрос.


Вернуться в «Физика»

Кто сейчас на форуме

Количество пользователей, которые сейчас просматривают этот форум: нет зарегистрированных пользователей и 4 гостей