Прошу помочь разобраться с вопросом по закону всемирного тяготения

Аватар пользователя
Хасим
Сообщений: 631
Зарегистрирован: 31 авг 2007, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение Хасим » 28 сен 2016, 13:41

Мы же видели что даже для идельного шара существует неустранимая погрешность, или я не прав?
Последний раз редактировалось Хасим 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

12d3
Сообщений: 3347
Зарегистрирован: 02 янв 2009, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение 12d3 » 28 сен 2016, 13:54

Хасим писал(а):Source of the post то именно на авторах и защитниках классической формулы лежит бремя доказательства.
http://lnfm1.sai.msu.ru/grav/russian/lectu...hiz/node16.html
Хасим писал(а):Source of the post Мы же видели что даже для идельного шара существует неустранимая погрешность, или я не прав?
Я не увидел.
Последний раз редактировалось 12d3 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

Аватар пользователя
Хасим
Сообщений: 631
Зарегистрирован: 31 авг 2007, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение Хасим » 28 сен 2016, 14:09

Спасибо за ссылку, скину ее автору - путь думает
Последний раз редактировалось Хасим 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

piven
Сообщений: 948
Зарегистрирован: 14 янв 2014, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение piven » 05 окт 2016, 16:26

12d3 писал(а):Source of the post Автор первую половину текста сравнивает силы притяжения от двух масс, находящихся в противоположных точках . Шар притягивает ровно так же, как и точечное тело той же массы, помещенное в центр.
Закон всемирного давления 5а Экранируемая Схема закона всемирного давления не копируется? Unknown Universe! Вы умно раскритиковали гипотезу aleksejj-mishnev00 13.10.1967 г. я предложил (на схеме) закон всемирного давления, где за спиной масс стоят невидимые, но реально присутствующие силы тяжести Вселенной, а за расстоянием стоят силы веса, что делает формулу И.Ньютона более осмысленной, Схема 5. F=f(m1x m2):r^2 =f(F^T)1->m1->p(R1)^2->p
Последний раз редактировалось piven 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

piven
Сообщений: 948
Зарегистрирован: 14 янв 2014, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение piven » 05 окт 2016, 16:33

[quote="[url=http://e-science11.ru/test_forum/memberlist.php?mode=viewprofile&u=45793]piven[/url]"][post]1289194[/post] [quote="[url=http://e-science11.ru/test_forum/memberlist.php?mode=viewprofile&u=37989]12d3[/url]"][post]1288808[/post] [/quote]Автор первую половину текста сравнивает силы притяжения от двух масс, находящихся в противоположных точках . Шар притягивает ровно так же, как и точечное тело той же массы, помещенное в центр.
Закон всемирного давления 5а Экранируемая Схема закона всемирного давления не копируется? Unknown Universe! Вы умно раскритиковали гипотезу aleksejj-mishnev00 13.10.1967 г. я предложил (на схеме) закон всемирного давления, где за спиной масс стоят невидимые, но реально присутствующие силы тяжести Вселенной, а за расстоянием стоят силы веса, что делает формулу И.Ньютона более осмысленной, Схема 5. F=f(m1x m2):r^2 =f(F^T)1->m1->p(R1)^2->p
[/quote]Схема 5.
F=f(m1x m2):r^2 =f(F^T)1->m1->p(R1)^2->p
[img]image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYMAAACHCAYAAAD0gjWwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKnMSURBVHhe7d0J3K7XeC/+x1AxDyXhJIaTEFIcY5qQaonWUEGIITV3s4umjghpCIK21JCkOBxCEJIeQ9BGiSElCCGtoU5QkRIkjZpa2jNP//e/vpf9e3rl9rz7fffe797Z2d7f53N/7vu573WvdU3rWtda91rrudLSwGwd61jHOtbxc40rbzqvYx3rWMc6fo6x3hisY4fg//v//r/NHjsS/+f//J/Z//7f//sy5f6///f/6vy//tf/mqWz/C//8i91Xsc6fh6wPky0jh2ClRz+la+8feMSDYAy0MHkf+EXfmF2pStdqZ5pAHbbbbe6hv/7f/9v3bvWta616c461rHrY71nsI6fC3D+V7nKVeqsUdA4BBqCxEQ/+tGPqpHQEGgQdnSvZR3ruLyw3jNYxw7BSmaWKH17QfmGgpw1CtOeCKefe4aHrn71q8+udrWrzf7rf/2vs2tf+9p1fx3r2JWx3jNYx88FNDa+E2S4KPhv/+2/zf75n/+57v3P//k/6/q6173u/BvCF77whdlBBx1U1+tYx66M9Z7BOn4u4buAQ/Q/7SW8973vnf3jP/7j7N3vfvfszne+8+yFL3zh+veDdezyWG8M1vFzgf/yX/7L7DrXuU5d6yGI/K9xjWvUb9eGjj7ykY/Mvvvd784+85nPzL75zW/OzjzzzOo53OhGN6p061jHroz1xmAdPxfQC7jqVa9a174JGAqCv/u7v6uewPvf//7ZHnvsMbvXve41O+CAA2b77rvv7OY3v/ns5JNPnj3ykY+sD8/rWMeujB36zcBHOuOy//2///f6LUILjOVmhof2ybXZHJAPf+vt1q4LdpFxelF8bAS6nWwO3omNOKcHABqCH//4x3XNsbOvL33pS7P73e9+s3/7b//t7Nxzzy17O/LII2d3v/vdZze4wQ1qiOgWt7hF5cF2s+4ArT4sQ2x2Hbs+MuUY/sf/+B9zGwPPggsvvHB2ySWX1HW3450dO7QxMDZrjPaa17xmVbDuAFRQxw9/+MP62OfalD/C1IVfx64Nuo6ejc8nEueE2cxK4JTZlcoZG/Jepoaytetf//p1bXhI/hqdJz/5yTUUxM4+/OEPV6U2vVRFv8Md7lDfDkA+ehP/9E//VDON0MohhM517NqgdwFFgg02xMbYgaHFBzzgAbNXvOIVs3ve856zpz71qbMvf/nL829SeWdnx+UyTKRiKZYgCUxFzvitCqbR4Bw0FNKIyDLeu72nIK7j8gObiH4TjTtzvitBxOZ9dpM83GNL8nH/4osvnt3sZjer+/LUcPSGxqyhc845p/JxfO1rX5vd9KY3rbQaqDgEeTkCjcn6B+afD0TXsRH2JajQy3zRi140e8xjHjM77LDDym/xWdLwb6sJaC5v7NDGgFBEUtNKmPsqLWETom64SC8zPULmemOwayKOXyWi4wQMzmxjNXqXPulMEb3e9a5X1+xNA/CUpzxl9va3v33ecChP+le+8pUVcLzlLW+Z7bXXXjU09L73va/ehdAVoIldTu14HbsufvKTn1TPkl9iC9/61rdmf/Znf1ZBwf3vf//ZbW5zm2oE3vGOd5T/0qO84Q1veIVap7JDh4lUQIcKpIIRcO9q654TpC47AUpjLHfDhg31fB27NlQyPcU4X1E4W2EzK8EwEMfuXdAQaBDYEufNrr7//e9X70AF5sxFeAKO5z3vebMHP/jBs3vc4x6z8847b/ae97yn8oBHP/rRs+985zt1lvfGjRtn3/ve9+pZyuvjxevYNZEhRr2A2972trOXvvSlpfevfvWrNUxkaOiud71r2ZXg9hd/8RcrvV7lFeW7wQ5rDERjKrZKm98EnOEh983mEG2dcMIJ1WUXob3sZS+rD3nr2LWhEjk0AI4O91dChpLYFXDSHL3DPfZ1wQUX1Awhwz+J6EVup512Wk0flVY+vfwzzjij8kpUqGKL+DQwbFWj5f46dm2wH3q+8Y1vXHb0J3/yJxVMPOQhD6lJCBqChz/84WU76clqLPyOj9vZscOGiVRIEVmGhOAHP/hBVT6tq2vT+25yk5vM/uAP/qB6A7rsT3rSk2a77777fCpghgHWsWuBw+1DMSqSMXp6Zzdbqvd06y+99NLZ4x73uNlxxx1XdsW5mynkuUaGU3/mM59Z72goLDBDiwjQfTOQXv/611dAorGQz2//9m9Xb4WDuKJU9HWsDQQD7IbfYpOxAzaT70bSsJUrGnboNwPddt11FVCLaaxNhHbRRRfVWQPwO7/zOyVo0dopp5wye+Mb3zi71a1uNR8qWG8Mdk1MP8JqCL7xjW9Ub/Hf/Jt/c5kPtougMqqUxv6lhwQghnWOOOKI+hi83377lX098YlPnEdu8PWvf73eE6hw8IYvBSmPf/zjZ3/7t39b21IcffTR9S2BrcoD2OW6Te766EHsiSeeODv77LNrsoEho7/6q7+q5xYrmk1kuPtTn/pUzU475phjZre85S3rvZ0dP9P/VqlA5QSVS3c46NdbMlYqrXFcraqKBsZqRVznn3/+7POf//zsaU97WlUyldihrL333rsaD3SpdO51GtDpuXNol38aD9dbMmYX2oBz6WVdnsDjIohgAwYZoD2/Iwu/IyOQBhbx2GUYPccmMiwSmuTpXvLr7ymz09UhnWfKF0lF3oIGQzGCgec+97nzIZ1OO6CRnYCzypqGAG1x0nqbnP8nPvGJ2atf/erZIYccUvRm+Mm7PgDqhchD+RoEQQh6lGuaqcYqPdQgaw+m0JiBvGNTOeuVAH4jM3KY1qfIm5zyLLKMjKHbrGm1ARlcUcarV4PIIDoPYr+pC+QR24x8lwM59rqVa3KOncu3l2lYyLejO93pTrOPfvSjZR98me8I0uqJsjXrV3yLguhX2q67IHbUbbzXbe+GTzT2PNiJ38ro5QSxmRUxMrkMxoubrpbHIGppCGfTr6WlYfibrjYP74xWc9OvpaXBxNLoASx961vfWhpGvHSve92r7g8hLP3d3/3d0u///u8vDSHVPWUC+nIN/XoIqc6dh2EMq+IJ/vEf/3HT1VKVm/xyvjwxDHPT1U/l2GmNLoaTWRoV4TK6IUsg68jyxz/+8Ty/ETXXuWM4w6VhUHXtPAyrrkHePf/hbDZd/SvYQ5eZ9Ojq6HlC19GIqJae8YxnlA084hGPqHs9v/AE9N/zxhea6R162qc//elL97nPfTb9+lfIg2zyDrBH+NznPjen/973vnflh/ZFPEG/1+W0yJbyPLIOyDTyobeAjOg4QHPykO+f/dmfLT3nOc+p39H1VM5XVOCny4V+et0HMiAjMok9Se8+veTwfCrzLueuN+9Lq850G33yk5+8NBqDSvuWt7xlafQw6/6ZZ565tO+++1Yd+MhHPrL0/Oc/v+6nHoWeReg0hTfn2KV3yQAd3VZhyg9I23lZCfPGQEGgoBCbit4JAvcJR0F5b0uQyhfIhwM49dRTN935KXO9YuUabVMjCBbRspzgp4iyOJPIII4kcthZ0I0yRsCBd9APkO3UUCITOkijEF7lnfxjSH5HX12eF1544fz3i170oqXzzjuv6JD+xS9+8dJBBx209PGPf/xnDNI7PZ9AA8fZffvb315673vfW5VKnkAHbDCVy7U8Om+PfOQjl37jN35jzssXv/jFShc7jX04awTf9a531fPwpuzQKt/eAMuzN5KQcqTrARG6fvCDH2z6dVlwOp/97GfrWnkONOR9z2PfeJYX23e/lxE6vKt85Y1e0dJDHvKQ4uH73/9+PYep/q/oIIfwRD4ve9nL5rqYYkt4j9y90+0z9YHNjF7m0qMf/eil0XOte/T3ne98Z+l617te2ZX4+kMf+lA900Cce+65db0IysgB3Sd2n9PpCZ9ojT27131l94+dj5UwbwxktpyTTYaI6oWCd6b3FiENSAfmVfw3vvGNS7/5m7+5dNvb3nZelqgwFXOavzQUhB4C8VtlidJAJdla/Oqv/urCind5oiuVLMmG7B14J4fwHCNJA+H5U5/61HKknnlXHgz57LPPXjrrrLMqHXCgkSl897vfrfOJJ5649I53vKOu4W//9m8rMiLziy++eOkBD3jA3FA/9alPLV372teuyjO6ynVPnp53g4ep/Yj4bnOb2ywdcsghS1/4whc23f1phfz85z+/9Au/8Av1m/P767/+63mlOfjgg5de+MIXLv3Kr/zKPL/73ve+lR+5nHTSSUtvetOb6j7I/2lPe1pdH3fccUt77713XcNFF11UeZDTH/7hHxYP5PCNb3xjnvff//3fL11wwQV1Hbsjk3e+853zRkS5bMdzB5t6z3ves3THO96xngepd/QE3qOXboMpQ8D0N3/zN3Wd+gHy/Y//8T8uHX744fO08p3K+4qKzis/wk41/Bq//fffv+yL/OibjmK/zvE9ZEG2qR/gea/fPajqTtY78vnABz5Qva/oDPRiBT9wjWtcY+nAAw9cusc97jGvV4v8h3Ll6ZkD7am/QehUVp6hJ7R0uzrnnHPqOWytzueNAeIicMSlcIVGoKDgXG8JIpAYeAz2K1/5ytIf//EfL13rWteqaBBEiFrYCANzXaCuu3FIl7Rbiwhcq36Vq1xlbhQR/uUNtF166aVl7CKTffbZZ+kud7lLPUNfDIBsXMeIL7nkkqW99tpr6WMf+9jSxo0bl1760pfOZckA73rXu1aeIMJ50IMeVM6dPF796lcvffrTn66Kd+tb33rpP//n/zx3dI997GPL+YIKcPLJJ9e1PDlQzvp5z3ve0tve9ra6PzV0+kc323LNpj74wQ8u3e52t1u6wQ1uUHRy5vTAHgwlHnbYYUtHHHHE0j3vec+lN7zhDfOGRhSsAqqk+ESjrvvv/d7v1XORuAYGbeeff369J5/Y8Z3vfOfSu3yOOeaYpcc85jFFG7tU0Y8++uhKB2TxxCc+cem6171uOV5gi8997nMrH72Tu93tbvP7XS/y/OhHP7r07Gc/u+z+/ve/f+WDbg0z6End9KY3rcb1t37rt0o2aZC9f/Ob37zK6k5KGfLU0zn++ONLppA0+X1FBh7YZGxXw84G2CwdQXxKd9TdT0xBdvLzHtvQYGjwb3SjG5WdeK5c9uQa5O239HQoyBBIpAegoWaDm4M8U3bKD9yXf9Kof1/60pfK2aMJP+zhT//0T5d+7dd+bWm//fYruxPcCMI62Hdv3FbCz3wzQByGpw4/hgW9YjPELvyVgMHkHQGDCvD1r3+9GosnPelJS//u3/27TU9+im4IhNeV3L9DYD7poJexOXC0HJjI8sgjj6x7yhEdbM6gdjQ4q9e97nVLr33ta8tZoc1wze6777705je/eenQQw+tHlZg3PJxj3tcyVxXlmG5FsVyigzZOLroWM/BdxuO6RWveMXSr//6r5cj3W233coYu1wZocidvKTVgHJIHKX3Hv7whxdNuvDvf//7i+5PfOIT8zy6g0qAQMd6hFe72tUqyoU/+ZM/qbMG5prXvGZFYF/+8pcrWKB3tL797W+vZ8qhR2WhWXDx0Ic+tHp6Gr2nPOUpZVt77rlnNXjkoKG58Y1vvPTABz6weJFv7DmRJ5rRK73n6gJnrfFgH/Ln2AE9Go/wFKTCk/ETnvCE0tNf/uVfVu8K6FEDhpbgd37nd+bvsWu2bOiMDiHfjTgGeV7/+tdfes1rXlP3pE09TQN+RUZ4oQv6wRMdvvWtby3d/vIv/3I18O51O42vCTyTFx3Kp9shCEbUq/gNepFGr1S9E+Dc4Q53qHpz97vfvQKif/iHf6i0yYtNdCfs2rN+yL8faMr7IA8Njh6G+nS/+92vhl2vc53rlPMHetdj70OC+NqSBqBj3hjE6LogE9UgzPV0HJSgdWcTWa6EGC+oLD7o+UDoQ7HxTgrW6qnsWr3QFMV0EJT7WnOtsrHlCLUbwGodOcP45je/WWPfPg7F+LqCdgZQNjmJnsmHgYpkNJ5kyhne4ha3qLRkw0Fy+iJ5USh89atfrUiZ0SQKUqk4P9E3R3XKKaeUg6Ubzo2eyJzhk4meiQj4a1/7WhkqJ5WenaE/+qAH+TFY6QKynjrL2Jrhjitd6UoV8Rlq8p5y8SpixxN7fP3rX1+OdI899lj6oz/6o+qBqMicv0ZRd17DlG8OIu6/+qu/qmvfp7yrgdGQcvBA5xyKPFQ4Tv7YY4+tj8iARjZMbhpcQ0Kc0K1udasqh60pg6zwh06I/eLhYQ97WMlcXuSo0dIQK0/vS2Os94EGZYMGVVry1MsDeYuIlSmIEhkql+OI7aZ+rLYO7OzoTo8eBBx0F4fYg8LU2/BOJoucfxoXz9nt1a9+9aVnPetZSxs2bChZshONDX1rcF/5ylfWe/SX8uIzY8P5Hf8Frh2e0cuUjiDv5jm7zZC5BilQJwyPxTaTvp/T4K0W88agC82183/6T/+piBGNHXDAAeVwGK5KpsVivCqgoYgtQZRCeH/+53++9IIXvKAUgUEQzd7ylrcswaT7TICYi1BDr7OKqGFJWhVF/g5lrVYgynvf+95XkSXIW5k7Gzgjld/Ys2EBDZiIl1w80xPg6IDz1rjRkSjbhy+ViEzIX4QfkBfHqkHxXKMB8iUT0fO73/3u0lMMn3x++7d/uz6Wmc3CCUbe8oM4Q3Adg58i9zk5M3cYPzucVhCQT2iA6KmX5T2/2QOnCN0WBB7sTsOjgcUnh3v66advSrG09PKXv7yiebbgWcrRyPnOxSmpI4IZvQX1BGJ/nVfXZs/lGsiY/tClDA2rHoqen3toUr76loY6wY56ySEYqjC856wx0Xj3MeROwxUVZIFvMu118lGPelQ16N0fALmB96Jz78pDXfjkJz9ZvU/fjTTQhlwNNWqcBUqGemIzU/n1oNgzR3pfCQAC992LX0WL9N2WIb4Pb56jvwfZ6paGKHmxXR+zw2+HMhJAwbSs5XCZYaIuUIUanzRkgggfA1U+BXAqoregV0oIExHQcsS4r7I6QjhBUy5ldSSvGAKBGTPUlWb8BCMiNmaHHs8JLYYQKHMRPd6RVlQg0gDv97RoSPnuT/PeHEI/oG36LnlHBoF0HfSifOmUHwPiEPA9fT+0qgBJ6+NogAZlyLc7UViUF3mAszx7Gs5HIxIkTQealaPMaXnB9J3QDd5Bs7zR40C7e1N63fN8quvYeHQbOiLPrpf0QqZIHpD3RWjpedB1zyc84K2/6zr8Rldks6hM5eAxAY9G3z0OTe/QO3oIGpPMZumym8o1iC4iVyAL6btMe5rwHOCjp5Wu/44dy9e1w3Xkn+cgr6STT5el+4H36EeA6mO+8pIu4IfUizPOOGPpqKOOqm8wRhx8cxLQanD5GXKLXjhdQ9Z60X/xF39R5ZAj+ZJJp8E73Y5CE90E+NCw6MGkgaZr9CY/+aC968h96YySCLD0PvV2yYOvkpa99Xe2FZdZgTwKmu+tMQRZi3VGVFIbePnDD4t/LMbx94BWCA9nXAshbCpngc+IQmsLicHcfLl2MJjbdHVZpHjv9CXcQxDzpf6eWUkaDKFXue5ZODSEU6sBLfZA5+jaVV6jYakFF6O7XytPrX62gZTFb1l5iq6hsDq8M7pks3322ae2RhgGUO8MhRc/ysVTyicnMsGD+/JSnmvP+j20Siev8AXyyaIq1+jwrgO8PxRe19PdD+VHZwcffHDtoLjnnnsWX2QH0WXo62UNg52vog3v0riGyAft8kA35B3lhp7hoObv04czGSk3cgC/+wF5BmTuPeeUC6M7vuJfT+I5/ELKj52wETS6T/7KjX5TFlm7H5rwLL18PfOe/MDZO+Tp2jvqDPsPlO9+eIqduYbk7XCfncvLwjblKR/NrpWVOhF7pAN5xZ7YifSeDwdWC/fkKW9p5KMsdMlLWjKwmC4L8MD73ol+0RS72RzIURmpq+E18gyk6XKGrm80ew+duRfecvbMO1aIv/Od7yxZWLFuFfBoAGobEvTbspxORtRf9cOWI13+aAjvbITsYQS/xYetSwJ040nZ3gltEB+FPs+zmt4uuRs2bKhdFqymzzuxx9iW/OjEu+4HBx10UOX12c9+djZ6orN3vetdlbbXv9jxtmLeGDAAzHQFxVAQbj+WY445Zna7292uVtshfHShq5Iylhg0o+Gc7nznO9c+LoSpCAxDjKCXE1AuRUU53pMnAVJcjEReymHw/rTcStXRm5gdf/zx1SDIR/7ScFSjZa6GAT8qrHvytEzcBlO3vvWtq5FQweSJZ2VIl90H0bKIZulCtyNp3HfgxT35okcaeSW/yCY8Aln2srpcwpuzCh492EsdYtDhA0a0Uvn3xsRz70fWZIsWZQNaUqldhw/oFdI99IPf6AzQ5vdqHAlIj6aeb3eIgWehpSNOGS/eCW8d5EMu6Ep5OUPszLtp+Dr+cdPWxMA2kz5OJJhWUGnIYUo3XtENeJSn99yTN7o4Js7NimiyVxZngA7pHbbLSOBiM7Xvfve7FdSof/L49re/XXWATpUZWqzY9v53vvOdCuaUwVbk7z1Bg/Tejdwd7MRzNpX83SNL9kZ+9hTzXP7e+f73v1+H/ARkaFGOMuhEueedd17JgeO2+4BnHLr0AjW7FdABP4RedNsuBLKzKN2SV+qROowuv3MPyICdoB/f5IxuNDqjTXr54YE99Hrqvmsyx5N3pMfLiObrvn88oy/0JlhQPprVYXx5T/7qsdXNeEaTPMlCQ+J/EuzgbKcGsiYnDdvGjRuLP7RsKy7TM3CJUERiOvj0pz89G93R2Zvf/OYSnp1E7cEhCu9gBA4MH3bYYfWeqNwGdJQhbwfmc3aA3yLAMKUcSmfgDMo156ySERBDY6CMYXQVa+m33SgJVx4XX3xxVQpKkZfz6E7WPuTKidFKx6i8o2HzDsOgPGUwAMpVaZQrPeWolOAd6clMnhTp8BxPDJ7RaXhcu89Qlc1wPGMIFOosHwbm4BDkyZGgi378loaRkbNog+HgyTvyl5ZzkA79KlYaOs4Bv96PXFQiPMpbnmTuufR4IGf0oQeN3pO3587eJxtpyRGd6FCZXOPRGf/exTeelE2vHLTep/2ByB0v0kff8icvNLpmD+xGZfOuskKr++SAntgXW5YfGfgtrYqpMnEw0qNbvnh3HfnLWzl+sy0yQge67KqLR/JJA5H0kT154dv79BT+wTPp5RnnK2/P0ei+a3xxjOglBxEw/Ugf2d/+9revMqQnU3r+yle+Uvr0nKx/6Zd+qd5LgCMvdq0cfItCRZ7otT2HPXfQq4zYKHvDl3fIUFl4kIbdkS/9Ocs79mOUwXtsAeg/jSB5c5jyV649odBLt/IyCgH45VektUeUBo9t77///lUHNX7kpCw0oZku6B+9yqdDMlZHv/jFL9Yox+c+97lKb680O4+SMz7JAW3exY8zedA12tUjZZC1+2glh29+85s1OiE9u2Yr9ioiD/TQLRrlKR/3EkygQ150Rg5GNPgY21788i//csnzgx/84Owv/uIv6v+5Y0Pe2VbMGwOZpjK55TdCtUhaIoweffTRs6OOOqqee0ZYjP5hD3tYOTjEe49SRdu6bPJjpJQs/5ThyDVIQ2gqpDwpTQuNSenckydFcuoUrCzlihyAAv25OciXgTNQgmYIhEpx3mPElMI4pcMTA5EvZ89JAMV7RwVkJHhDI6NT0SjfPQ0RHhydR5A3havwjAsd+EiFcA+flBreGYs0DEqlUHGlRR/DJ3vp/L2eNHhiQDZjY6SMUb7y4QDQJPLBh0qDBpX93ve+d6UDMknDg1f3le0eWcXo3CcTsknZHIN0+MS3hlTZMWwOIRVBenJPHuRP12SnwkuDTvpUGZSLXmc2okxl0AP5O8cmvEs2rqXxHvn7Lari8NipssnpLne5S/FOttKhIbpCJx0oQ9n4Rp+80IFuNoNH9/ApHd7SADrIHqKj/PYMjXH4aIA4TEAH/tDFNtCQ9IBfNKLnxBNPrDQveclL6pmy2M1rXvOa0oUdgPEmfWyTLPEkLf17nyNm0xwtoBPteAxyTz6xn82hyynodUXgaGvoT37yk/WMLO52t7tVkKfes3M2oX4fcMABs0MPPbQaN3WfDOQrH/WcHaIJfX6vBuznpJNOmn3oQx+q3/Ll6wS9ZCgfcgL5o7vrCb30Qo7OIB26/NeBP705/fTTZ/e9733n8uq2AeSvPkRWbJSPEXS/7nWvq4briU984uzjH/94NQx//dd/XX5V2rXAvDFgBAh3RiCGMMNh/Pmf//nsGc94RkVCjCkCJmzpKImBaTA4I9dabRG71ovDUSlB3l0AHaEh+RIwgRMwRUe4PQ9OSOVmJByOCOnwww8vQRKSPFzL07WzPLuRyJcD8TzOQHmGnt761rfWeB3HRJHyZxx6CJTHWapQ/vxE5WFEnASaHeidgshzgLLwgzaHd2Iw8pA/eaAxiB4iI4icAt1K+67bsVPEzSEAmjWQNm2ThyFA5dIbcCzuK1M5KkF0A3aWta1z6EUD5wFo4BC922UcXqHznyM8iEzveMc7ViMQyD86nx5ToIfsPJNvznSsMXzkIx9ZlSgVLw2LA809T7bQHR0ZyB9fSRdnrBdD7/LBv3fJIg2GBsX7oQlyTa6uUxb7omv2Kw+0xxHRnfyjS447PZZE/q45T05T/WDDyqZnaUWVnItolRzUl3333bd44Hw4GO86K1/Z6Ou2Fd17DmjEC9l0vZMD4E19UqYeYBpbvLgW4NgM8LGPfWyVozzP2bDvAvLkCJ/znOcUL/KTTvnO0npnUX1DG/vqupUebbmfBlBaedhx1D/gCRie8IQnzH7/93+/6gJ6ycMhj9hmryP4cfYb3fI0hO2f9vQOAN3yo2M2hB9p8eA3W5QHWdkZFQTlr3rVq6osgc1f/uVfVj7K77xtNUbhhUH4/Ev5ILKuhxHX72Fk81WQtgDwFXsYZf2GQXx9SYdhyLUIaTAyX449jLPyX3QMYc5nAQyhVdny9s4Q6nzmwVDWfLaD90yrGw1MzXgySyCzjzzznjxCE8jDb0f4dK1s+aI76LxFBqa7mvI4IstaAWyuemBbAqs/LfgxVc18fTN8TMX8gz/4g5o7b/UuHkD5+ArQoJzwB2QxDK/u9bSAv9ArnfedpXP2zIIU6jXTxNniqdFY1jvKt6GWKYujC173AB+mWYI86ZXe8WoNRuQ1GryaC4+OgMwiV6AH9Ef3K0FeZq4NJ1hz9yN3NKwGaItMlIlO6DI1S204uJJRaPfcdWxReXjp77mX9PIeTrOuyXOqm/ye3kffcvCMrLyTcroszSKx3sJzNMb2umxMwzWrzvtWbg/HUrOKTA+3dsL0V+8qy/RT07HNVMGL+moRojyCyC/0BFPbnQIfZqxZaW22jjpj+qfpm/Rr5bCZV72+BWiLrVj9rm5b60FvoNy8NxqxOsNq7GsRwsui91NXR+Naaz4sMrPKPnphBwGeIy/o1/Lu9ug6xyK4H9tDW/hUBnhuaxnTiNnxWmLeGHQoWGXkRN797nfXqkgEMp5//+///WX2eMFshBmCLaCR1v1eqToIlfIxvDnjmsI0V4udzKtncF2RDKX/li8lEKBzr2CL0N9VSbriu4I1hpyrOfqjpd50918bs+DSSy+tRsLKXHPxNRJWL5qLroKccMIJtcI3jpQ8HB1oiuGomNJGzh3dMbhWrnUIHIlFZWnM5c/AOUUNFEjv0Ohv2LChKjPHgk4rLq2yTOUAW0XYEgG6XKDTnwZqOUjrfTKTljw1XvLuuljO6MksOjZ9j07YhoVC0UsaFeBULMCjl16BldX56DTbBsNaGGnkFZmBldvWZdCPSqvMZz7zmXOHJc/QHn6k1eA6olfP8CJwsKrVSm3wLieuHo5ed9FtKrXFT+53nVtoZxHc97///dqGw0pckFaeFq6BBt+WGd4XrCn71FNPrTVDCRbS2OEj9E/t0n12IkiyQPF3f/d3a+2LtRYaANPPLQRMA7Nc3ZPP6InOecGHKeKjNzCnJ7YXeUWnvYGO/nqddR366dvB1qKLjugcnymn65F+1Q31t/u/bl+QQHLKb353mpTZ00fGqd95R/mu0U2/ozdTU/0X+YFtwbwx6EQGoj8La/7Df/gP9ZuRqGwEgJEQ3yvPckB4mAv67ygzipC+C8tK59HVLqObKhTdqVChye+kcS/GljKjxNXQHigndIJoymIsjtViNVBml+M00kMLOZr/rCehsj74wQ8ux22xEYfAAYvsVVx0y69X/EAlCpK/M8eBLxGNfW9UWnJFm7nT5lor3xYKkW+2MeDczLW26AuSbyAPFb1vWjcFHpXvcJ08uqy7HKUR7VjBzCnhi9GjMT0V79quAUIz/PCHP6z0HGGP1KfyogfylD+ZiKxCF57Yud4P2xIpZ98lc9QFQKCRsrjLexaBnX766bVKla1Kgwe2oKKCvKLvAH32tJG/BZy20gCRv8aM7tiAMtBlMWU2tmMntgDhdMlFWuC01A9OXSMgoiZLAYjFVBw/B6JHobG91rWuVUGeoEbdRof1CYBmiN2in7y9KxCzoFHPw2pnQY51DmyVw5Zu6kMCMpo6r9R18hGsaOjIMz2Bbt/QbQa8L09y6vA7eQOZo4tMuy7k19OtBPlqQPVW9K40ztBtLfLr+U7p3lrQndEQ8t6crLcWl+kZRDi9EEuhwYpW3U3dPcxPHfJK6I4AYuypkJD8IlBAD6dlcUmEjr4IOEYLeV9ZPY8gEcZUOVPaloN0jE/eoRtNKqXVoRxoIjLplCNdKgH6cj9wHVo5EZGUDds45Y0bN1ZvQr5kb1iHE1OJExmEjhifyqscv11zoIa16I0Ds1DPghuRjpXJGh75eWYxjh4FGEbgYERB8iK7yJcTEL2mstJHdDKVpXtkNL3fHbrtRPbcc89axaynlLQcL54FJYIAgQigx3Ach8eJg+jdamwLezhH8lFZ0RUb0Vhc97rXLZlxPHiKbvQYvEsXVsRf5zrXqXQiahvS2c7jyle+csmN4+YQOW2NwLe//e1ywBoTPb507cNHr09AH6J1Nk2WZCT61/CgUYOFDrRx3IbyyJB8DKEpr+tbwyC4oUtytYiK/ViM9ZnPfKbyY0saFo2AHozfhnHQKC8NjN68yNwQjSEdjtlusHi3EFNPfOqgAzJGL17RNEVsPtE+xHbZ/LWvfe35LrIpI7qBXCcfmJaDD3JIRB+5awDsaGB403By/Ags8hOLwPbTuwY9bg2/+th9EPp6gzPV/dZCvuxKXYldrZb21WL+AXkIsj5a+dk/msEQRH0I9uHJtCkfr3wMMdNoKLQ+XvSPS6vBYGheVt4dDNfHNnT4wGk2ko9evuorLx+KfFwZCqgPd/3DiXtmXnTgywcXGMKsj4agbOU5y8+xOZCBDzoBvqeysvBtOIfZiBpq+u0whPpwKN1yH3iGQdcHW2l86B4Krg9J7vm4RRZ4HhW+Zjj5+JmpoZ5L7yOlaXF4MJXXDIzwGnklX/KlwxER1oQA6Xw4+9KXvjQbjcPsgQ98YKU1BdekAXz4oEv2aFKWD5Wmrvr4hUc0grLwo7ypDbnvOX2QSTAqTv03sb83NUNCOT5omhBghhYduz+i+voQCmbF+CBOBv5JyrRds1DM0/bBnL2YVimd2ULK9rFc2aP3VR9GRxReH/3RSpdmTynLh0x2d8IJJ9T7ZtC5T3bmhvs3K7N1zjzzzFpvMxqpmvbn46ZZWiOCnuuMTuko8DHXLCvTF9UhHybNovEh0MQDs7jogXzNaDMhgS2NHknJwtRui0DNFDOhgU2hfTRApXe25wOsBVZo8Mx5NIpVHr2yY/L3YdLECNMqpXOtLB+STZJwz0wasqMjdIM6I4/UeTxKq465dgSeOzq8Kw/pnY899tiaOmq6pI/WSRO7Hg12ffRmT/Qnf9cmMJga6sOuOm+CivQjeCoZmYkknTpLBuxBWaOhr8kJ9IJu9OFxaq/LIXYsTzSSu4/CbFM9Sp4di+5tC8iH3dIBeshl6ve2CkO4hZHppqufQos2Cq3rPnYGIqi0htINodT1ajGEWXk7B/0adHFtfma8G22iuJST1nYIeT5k1SEimkYwod3wQ6LSIcQ6by3QJY8e5aLNrofGFtHlGTpdryQnNPYoQ97eDTynC1FS7uNHpGrcVmToo7UoX29Cr0K0pVfngzG5AJps9GbfHVDmN77xjRprtxlctqMWIQM+RVN407PIkBJMZe93pxliW3QemUuXCE1k6HuByMdQoKEHUb2xbz0VujdEISoWURvu+epXv1pj097DIzsxzmwMW/l6Qg5j+NnqWy9XpK1nBGhgJ86pCqJsPSX2ZxhIVC3Sdk+EbMiNXEbDXZv46Tn4SOt9ugh/eI5sYq/RLXoMhei1ec8wDp0aJvIdCejMJoMd5INePSX6Crq88asc5Tt88xDtG5ayJ5UhQj0TvR10k0midXbBxnp+qftAf6lHHd2ulYlfh/TJy3vo79DTY6MddBuQSfKOrsAkDt8l9XAyvAXS5/cImOqs5zUa7+r1kgNe+YwAnel1rBapf7FrPWy2mbqO1y6TbfUzQepLzl1Pa4F5YxAoALNhtMP4bEeI6d2u5UCZMaZuJEEqiso2Wtr51sUgbdITMucgnyhV+ehNvql84DqVkjEZV80fUQTeWw3kQzY9/wBdqYToUmHxkV0FF0Ha8IWGbpQZbgpt8s+1/KV1D03KJRPoclWRjburBD5+aSh0/TkDH+B9CNbd5XinlVyXWF66vJEfnZi5lW8SgXK8HwfQEfoC6TrPASev8ddIgbwSAEjPkZjJpmy86/LjR8MByTMNs7w4fek1zJyOxo7uOULlcfjkjD5DNEC2cVroIz+0kIPvEvmGgQZBke2k0aihNaafb0dBbDT1SXmxH+UazkJ70oG84/iUK717eU/65Mf2Hb7z0KfhHkOWxvTxbCIAZ4iPvANxUGiQd3SUMiD3pMVjfx8NdBu5d5CbfJzzTqdXfhpBDV70C3RlsziNL12bwSMIiH8hCx+o8Ule8jQsRyeuBQh0DfIkQ9/kRi+ghj3ZXuhQrgNyb3OQhjxis2TWYcYgnjKUlOfeSznbimk+6l2vh9uKyzQGybg7hjgZlczzPCMUkdBqEWfRnQG4jgGqbKNLWGOvDCAVW5ooLEYAhNOVkvzzncN7nkuPdpXChlXZ759RSrMaZTGEXlHkqSxy6ApJGvmKchgnB8HBSOd5jxSULQ/pQYPrHkczuoJ1b0pf0ob36EQ0JC8yIrtUopSnsoF0GivbVhtHNruEoyQXu2KK/H3YdCjL+8ZajdvHablHJtFFBz47Tx0qaGwKVHC0yscsJ+hBR2TrjM84SZH66JZXdEs+6JEHmfg9uv3zBhWdbAqUvWjcOui6BPlN00Se8ur8++2Z9JE9RGZkEhsNolvldrlIF14hdsWp+Yjpm4CehA+ZIn4fgd33gTnRda8bARqUiUZlTvnliH2j85EbUgcD/C7SeYe8k87hN57pmgOjN9+GOn8gDfvzzUxDIPjwXSXQE0sPjv3qHZjdxWewT427nqJvXfgiI/fMThIY+H4CXTfQ5b4cuk3GHsgxjTnoxe62227Va4uMot+1Quwc2LWypz2urcVlGoMwFQPxm/FA7jmnMsBqmZVXmOjAkMrpw4iPeKDMlJt3ulFSXhTK4BlYaPKeyDdDIBChZdjEbBK/U8FWg8gmIIfQCD0v9OWZ98wG8fEt6DJLuvDnt0hHRJcoB1KxewXyITHvq0hdRxAnFHQnOJUnqKwiXcNEhj98tDZ90rCGCExUrZES/WhQ6CCOrctC+WSujDyPHskDLz19QIehfeqEOsggvMkv70SuhopMiw2im6RTTu6lgQT3Qx/ggW0FaI5TC5QZuskxNMiHfJLX1DmEP89Di/yVKX+Nl+CIHfvYix/60KPzMVdjaDZbIJ/QpezUh/Anb2VPbT70cXZoNIxmS20zo6R3L7R3yB9/kelyQEveVwZnnvVH0O1AeXptnLveKkfrg39syJ8BqUvska/QoHjfv4FpPDSEyvM3us54ddbAGdpj0915RxdbAnmG5shSPpGzj/ACEQ3atP6tFaKT6HitMG8MZMyYuvJSWJjurWOgsnSFbgmURYiGhm54wxvWbxUKHfKMEcC09RMZ3OpWt6roKFP/GKY8REq6kpBGQ17+pEIUzJmkEqwWnZYOdJJPnITyYmyAbs8NGTEQ6Hl1g4ycOQRpTA0lDxG7KJ0DwSO9GBs2A0f0k/fwZFybo5DO0IVr+SUNAxU5cSj03A02aSA24F0QZXNOHIXphcbjRaXGoPW2fLOQr0qcd52nzqI3ZnFei3SRPLzv+bTiet5nd6RBIze0GDuWxnudBve6vILwGXshY3lFl85JA9E7SBt6Iem6nkH6TovnGmjTNg3jmbljlpKhEt98zFbyjUakrzw09LqmHPn1PCNfadOQdb0q0zGVuTzURdNnRbaGcMJ7eIs8p3x5N/RN4Z7nyjMtMusOen1mB6HHt438qQ+YLebbSeqVvAwHRU+B+/FXnb7Q1Pmd+rXVAu95V77Re/JJuX5r0AS4dDC13a2BchzKjRxyf63wM98MtjemSjRF0f7h3SkxDpEJQYp+tPo+2BEA5inBRxvPKWCvvfaaVxK/VaJ0J0EErZJpPG5/+9vX8IgKqGt9u9vdrj6yRdAdEfrU+LcGDMT0Q/zGeMJPyu2KVdFVClMgNZYZ2tIgG/dP9KM73w3dR2SNDrlxLpyDSFnEYv683obhHo0EOtBgKqE5zGnYU7HJmSF3Y3bdHRLZcB4WGOnGmw6qN+EjtkZZQ2E8ldOj1/AeKEd+03yDyH/qvOTDlvJOz9d3mkSNEPmmwehwz3PldOSePKbPwHM0p1w0Llcx3WeDhrRMf9WYxuEbA2evFs1xxnjqvCjbPXoMHcqWJvz1usPJKivocusNsUZbL9DwCvro3pktGE71DQIW6WQRpnYSpHwTA9gBRB8QucXJogOSlzP+UwfxnWuITuNXEqF3oCGy6+/mnUX63VLIq+tfg3XlK1+56E+j3eF+p2VnwA5tDMJ8DJziOG33KZnQEu0Z0hH96jGIJnQLjSkzaBGy7R68Z1aGFdKQBTwcvZkmHCkjY2CMngJEGcYlNQKMXpnuL1fpKXgtjAU4xH322ae6tdAdCXn4HYNSYTR4Pkq6x4EYvuE00G7Wj0jcmL/88KwLrGE1DCa9GQ5mrGhMQU/B3HLO23APiABFX7Yu4LxBIwmdPo2Jbx9klQquvO4s3A/90nH+Gh0OxtCdoSZ0a+g5QPPnRU+68cog5+4ogtxzli+dSj/FIj0lnWeO8BT0CrycrvOO58pfVHZg+Mwfk5t/rseafz/z4R3PJjD0MWUIf2wRPItcMysG8jxOrPPimV4hGZtlk7TodaQh4DyTNz0bjooDBu/RFX1D7HIlxCaS1nvhy8dsPR95R4YQOead0JXGzf0+nNYbM/mndxG7SXnyl0e3TbO09KTpILJJA7SWYPPhT8BmIgOgF52RU8dq5LsjsMMagyiKQBiBCNeMEBFsVxp4plHwMSb/2mQaGkcIBKrLafXvTW5yk/nycBVO48IxSiMSpnAKgm5MFNYrvt/o6pV0LREDVBl90OIAY4zoWuSERFJWiOaZxgtPgGcRvsrCoVq9bMhMJdbVNn5KrqZnitKVZwqjBvKa17xmyZcRanA0DMZi8+FR70HD6wNdZC6KVaHIB73yjmHTLadnBgijl4aDCc+BdJ4bctKAaagsKtM46FFwQv5pToOlN8NppmIlau6I03RMI0K8xdlEztLbs8f9nhe6pjboffzFHnp696VnVxa7+ThpWMqHVzogU8NwGuvp8Cb9k0satMxOCq3dDpTpUFbuhx5l554Pl4ZAzQxL46F3YFpldIQOH59NwfUNAgzxGYaSfyJs12Yk4d+1Feu957E5RN/ewx+50qMeceBZeFVG5Oq6n6N3yD3wbmgNbxCfkboefxN56S2zSXJKXQfl53pbkbIg3+cEpeoOKEvZoS2IfV7e2GGNQVp4IDTRKofAoKPUOGsC4zB8PMoz0aUGIII0t56g+wwUQnUOlBNFx7gYY8B4GY/ITTnS9Mq4PaBiqaiGrPI7xr3IKBhQlx30Rq0bNfodcYyiUNGpITZrHzQgonnTKoGzFU1qHDQWgAbPRZgaYDLUwBjWEPFGPql0YFWrnpq8O9CZyuY9lZqc3VPOVNZkYXaIbxMaNLSpSHo4ejo+YPuIyOHRI1tIngG6YiO90eIMXe+xxx71PLJ2Dz1oifw62JNGUlCiMTZVEV3OZGtrAD2u5DEFGuThWWyvyyn3ILrs+gXv0wPaDBnSA+gxGzI0xRYiY/Ah2AdTvTnvotmaCbLMuL2olR36/gY+7AoEpAGBCDtYDcJ7dBI6BGfy9zuzD/HRJzNEHnTCYfMLaCbTgA7JSmOWbUlAOo7e9FE26h1HbEBZ0rAtQ6GGMgG96smiOre16PUUv8pQvh5J1u7QcfhCV+S2M2CHDhNxepgX+ek2UsQ0egwIzNSyOEqVnIMg3O6I5BeFRrDyZAwOAg+iLHmAMijtGte4xg5pDBgkY1AOR+0DcXdkKkvondLhd2/o4jgCFSXvcHycJjmLPOP8gaPhAJTjmWEcH6FFtaJc0EtAKwevURZB2sROGtNOu0x9AzEFVkWDVNrIGKaNWYe8HGjHE10u0gXnwUmYdy7yNvTg4ORMH+TENHbGwr0XZwDKDz0cnXLYSMoGNHPqepUaHfnKX++L3XH6elvyCp3eUY7faHaPPfmNBkcvIz0vIN/Ac+/pJfl+xS7lTVfKM6NIMCSNBlxvz/CoD/iGoyyOQ3McDj4802Ph4AUfhlv1DH1fU3/0CHw/M90yPWuNh28a9K4RtgcPLFdHp4gtR/bsxZAldH6D2AVe8W2Yl+PUuBlzt0VFNqyTBh30kIVl6oOy8EaGJjVkqNj95O8ZmTmAjQCbIBv62lZEx70hSvl4wRcee1nspdeTyxs7rDFItMoB5eMuBQMBRSgRYMfUGAmbcfW0DKYLlnJURgYa5biXNCoW6Fr78u8+OqLUtUYqSqA8jonzgeUMMuO5aRQB36EzDaP83Es5ekwqu6jL95ek1+DoTpO9e2lIVQrDPOjIeDFH4cO7BsF3mThGIH/vG3ZSOTmXDjJPBBS45504yc1B2jjU7lTznuecJT4NNYrUOUDzzDkxEa1Gwwd1zpT9oZks2JOPzCJMQyY+ePuWYeomZ2hoQ75sxBFH5j2yRw+EHyC33F8EcvatypCedTB6XfKNvuyz5INjX91NfvK3T5CG2rVvPBpmDbYJBpyfj7O3abvQmvHF+XCW9Ood60joXiPn+5tGRI/YkJBvN3jxDUFZ0onA3dsaoNu3OcPAwEbDZ7cJ3zYMIWnI0cGGlMk28YbnjLm7511TT/EPfrMBw6CRr8WD0YN33DfJQl3TMPlmB+qFxXl6nJvT22oRGwE8TOu7XmUPykCarZXx9sAOawwIHPPGbDluSkpjkHPGOxkPRUegKgGhcYicXldev5YmxuZd3WnvxuF1Q0wDw9mpOGhYZBTeXwtjgd6jCT820CKPXkYaJgjtQWTl+dTgAg5MOo7FCl1L8aXvjWryhzSqPT/vRx+hId93IufQomdhqAikTT7Oixr3jvCBf0cqhzPZK0Mah+e5F0ftN7jXZcgRioo1YOalGzbZfffdKzI2VMQ5GDpjI/Ihm/4+JG/olV36rkuQth/ho0PDIx9OWONFnqBsw6by5NTxynmTCzlziKZ8cpCGOTh3jlMDrUdmCEuAxcEJtjQQ3tfT0GsSUBheAj3B9AD16nxHoDNpNPodkfdqgQ95of9KV7pS2TU9TG0431E0VEYIfDMCDtMzctAwk4UedCCI0bgb91cG2ejNkIuhKPP72QE69Jxck6GG3hYW6pWGxDRvvWOzCmFK39YgNg+xo9iocoEeBRrusQ887EzYocNEWmaRRxc+gwGKC+IIAgYegQZxMknLMLJQRl4iiKc85SkVCepaJi1FBLrePkIzrkUV2G+KXSulJR9loRHNPgiLyKa0ZXwVIgtRUOQwpRWkI9sYY9LE2XaEljQQfncd5D6gK3rqcN87nJNehOupngDd0nqGPoff4QvcQ8MivkK7c3/PtS6/yE9EKCI2rGBKrQ/S5Mox9kkKGmAzaGzBbUxcz4aNGBrxDsfiw71vKPQToKvLFvwmp84HSKM8/ESueDdby1AGup29b9hHD0aDhSbBgTz1btCKNjyyZ44PDP/gUV2SFxjSSuOdHpMGOnoG/EQOU3sAeXkXr52nlLE5dGeoHqJxqk/XU/mRi7IELeTjHY2bXpKGC/RSDIXRlW01TMDQyEhLLho9vRALy8ym0+DrAQV6fpDeNXtQZrejtUC3F3KMrAGthjk1St2OeprLG6tuDLpzWGRIEWyPmDqjDNoydOhp8p5zDJeBuDZGa5aM6D3pDEmIGPpHJDC0YWaRdL41JLJSubIamRIC/IiaGIgPa3jKIQ8H482xrYihhA/Ap4jM0EYqk3sMCcggMum0bS/gc5q/MntFB/fotqf1u8tpmpc8+m/X4Q08j3NwP7xG/mzGWLhGx5Q9jtDsI918jb6PzlZ5G4KRR+Bdeavw0YE59IYmIPfQL7K2PkGPgTMxjOAwU8rKdQ23Mjha9OVd1wHala88184OvBjbzlCOCFcZIlXpjOfrLaSeaWA1UBquLn9DeXo46OA8I9PI3ll+3ulygDwLfZ3u1UIe3en1OuWZ37b/5qyDrvflYDyfw0eXySGiaNNAQ6uejwZG/u7rjYKhJlOj8ZJDed12HDsLDOlp0PDVZbcS8BC/AGm0g1yz46mvIb/VYL6F9WogabZiHszUVq62iLX9qy1Vg8FkpbPN6zC+OtsOeHTNa5tk27kO4us8CK3nec/94cxnI6KrrYNHpaltaW15657no6dQ2yePLnP9kboteUcXt/44G42ju1lb1HpuO+fRItd/M4+KVlu9Tsu2HfCIqoqG8AfLXW8NhmJKTuhzHXn5PaKi+t9bWxDjJSBjWydLj+a+hTaQv2dow++2gJ56HvJFW+gMDQ6Y6jwIPeQLaJS3tPIDz/I8ecYGgCxGxDwblWY2nGfp9p//+Z9ry23/qz0caG05TW+2Dc67kW1oTzkOv9Hs/3RHY1B0sR028cpXvrLos006O4mcPfOerZFHI1N0nHPOOUXbqIz1Dhtli2gaQUpt9227aFBGZEqXo5GZDSdf24aPnu3sbW9722z0Zuo5W2T/Xf+LIJ8PfOADte336E3MXvva1xZ9AVnjt+vNO+iErsPIZjWQhzyds13y+973vvoj+RGxlzzowpbfwxmVTCPz5Wyl44ADDpideuqptYU2eGc0wCWf0YhWOde73vVKnuoEpD4DPmF71d9tBbmRx7nnnlv/4/z5z3++fqN7Jdl0TOtphzLynIxGz6r+dmD0hOp/7FfEIGirMAq9TOQ/CJm3RKMS1LV7SaP7BkmTVrG3WsYwjedaSCXyEd0Mw51/RNXdEymZZZDvDiBPWxAMhVcX0Ngi1uTh47BuZoY5Ur485Y0+aUNzDs/6sa3oeRgXDR2AD13f3mPqckGbwz0y0fJHtqF1rSBP5Tj3fEWs03Kkc6ABPR14MpQ3vR94z7iuqY++bdgmxEfETJUU+Rs2MUQI+F8ENPVn+e2Y0iuaHM6vPm6aLYNuPQs9Tx9wDdWY8UE/PU9RbqIydHfoiRjq0Vsxr99HzGweZ8jJ2L51ACJ6CE3O5JPhzkRzyT/3c1bfwhc4i5C9R9ZTXjcHaXOsFtNo0wd59UYvHNCAJr3/TFP2G92rgd5E4B3lpEdEJovsiGzCg7K8k6PzuCV8bk+kfhvi89E+mNrUciBjRyC/+FcgL/XHqIky7FpgaM1kgdVg1Y1BjBBUjE5UuoRThVEWRhGnm90RRce4QJ5dwVbfxgg5IxXMQihbMieNj0OGDnypJ2Bdb3kaDzY+Z0tkH9oIhwEnv44+hjg1pLVCDBzwEmcbOZoWyDEBGkOn8eRpm+295LVadJ4WHQF9LVeB2QC9dVuA8IAn+usylp+G14dKHwM19Jy98Xnz9OmHczb0wglPy06ZgGdlTHlHvzSL6JYefZ4ZAuK4fTS24RuYcZX8BCzZ8Ram9hxa8Gh40e9eDwL04NlHTTxz2oay2KOGwkwi388MV9kSQv1BQ/8uIw/lp8zIILL3fHM2sNLzrQGekqeGUz3sMjczL9umuO8IvSuBHHra2FDG+WNbgLc40HzYR1cOz3PsTEAbnZrJll0BILrdHMgmvJJNn9AQf+EeG9IAZErvlmCLhokG0fUvO7ohul2DwOqOpPvoWnaD6ermSTMMov496pOf/GR163Xpe7dIHn57T/qcdacMKRkqkN9Qfv0Dky6jfyuSpy6556Nyzf70T/90dthhh9X78huVtGhAa2hKubrpus3oDd3DcOqZsoN+va0InwE5yh+Nnhma2GuvveofxjxDn+GjN73pTfUPaGeccUYNR/Q80Lzabj4ZbA7Ra+A3utCHtqksyBM8B8M46HG+6KKL6p+lnHN/zz33rKEdOjScwhamQKMyHaDMDGV0vjvY16gIJaPNQZ7yx8sLX/jCOj/rWc+qYSfDPsPR1L+NDYdX+WXoha0YnlC+97sclE1msaFAOvJLedERmXl/OLjZaJBmH/vYx2bf+973Ku1oEGqYxb+dse3RcJSs8CUfckaXs7Jckys6nR3ycVZmdOm3upN/+9taKC9DTWi9//3vX8MQ8nYfbw94wANmo4dXQ8Jd3qtBZCkfZfmnQ/xM3/c8NqeM2AU+oetnarM7C9iLf0jjs9QJPKxWTobjyClDo/iOfdGF+/I3HDqC8LqfobSVsEWNASPI39+pJBnLM7ZnPNTfvykYY3EWIzqa+ftEzh16xZEGA36HoRi5inL66afXdwKNEEdojNd47+ge1d8d+uvDjuTNSBgC1giaQ1JpUkanIc+mhrO9DCnKi+LANVqNJd7pTneqv/rE8zvf+c7i+Y1vfGM1EtJI6/3uuHteyyGVZTnIUxo6ifyUsUhmnNmXv/zl0q2xdL85MrLmvPwNJd04Zwy8Gy0+emCBdtcquTw2J3u8gvd6utibeymnQ5meGdPmsDRUhx9+eNmuv5TkLFVQOkhaY9Jo8ky50zJVzDjjyC9BSGQFkSk+XbM58go8A7x//etfr7+iNKasvvk+5r7873Of+9T1ve997/pGoU5A6keAfke/Do1o6zxsCeTBab/rXe+qhkAjefzxx9fffb7hDW8ouV566aVzervOV4K0DvVfvsrRQOPLkcYiCE/4YZtT+99aHrcnIg828MEPfrD822mnnXaZRm05sCvvhs+zzjpr9pGPfGT27W9/e/bVr3616tnHP/7xslV/aTt6WvPGgBw1rith1Y1BnAFDvvDCC+uj7Mknn1yO+VGPelR9rKXERCAqt8ry9Kc/ffagBz2oKt4UhEAwYZAhiY7BR+QLLrigHKE0lN4NIJGKZ+5H+TEaaUB6zxzSOsdAU4l8PM5HP9iehhTFd+cakKn/u/WREvw37pFHHjl76lOfWv+1C2gPb4B3PE8rwxTksDl43g2SrETMjOqb3/xmOU9OH92iV5MBfPQTxTK0aaX3fnhFb3Q4hfvKTmTkt4MOvBtdsCe8OuQzrTxpJPs70sbGvKNS3Pa2ty2+0ggB/tit3otyNHQ+uG3YsKEcXYBOFZDdidzlqaw0UFMd0Ivy0eGdH/3oR/VfvdCvR9e+KnPoh0SA3nXPITjQQGgwHOqANPe4xz3qOV34qOwjbOSJnxzodd/R9aWM1dh8gkEfweOATjzxxPoQrvHSq9KDTXDinHy7I18OCSqA7NDrCDjEyANiEwJQ52A1vFweYIdsUMDELkxuEUzHPjeH6IjON27cWLzzC/wxW9TTlgcZvupVr5r92q/9Wk282RJsUc8gX++1Rsccc0wx5ixSCTAWI+XsKFf0yHC8r8HACKciryhuJYEwBEbAiL0zdT4x9twnJGWBvD1XCaRhtBlWyPX2NiaOBG05pzGITFO+iE8vivxUMrNGVEK9K3/mTsGhnfzlsZqKptzNQZl6IRylaJS8OSuOxQwbTlQUzPHTQ3ey5Cp/PDjw13XpHplKr5K77g1hnk/hPoeiLDIKUo53Fr0XWiBpHHpXhxxySDVw7IHDih1CIv1HP/rRNQRJDi972csqrV6wimbGFx2lB6Gn+uEPf7iG88Jz7E2Z0waiOzxpyFK68ANkhAfvuic/ckiErH6xAWnQSGcaFPxx0oIb8tU46KEZ/jrwwAOrLHmylzhU6GUvB2XRK7vQk+KABIXsxp/BK18Apxx0Jj2k7q0GvZeDb7r3LhrJd7m8om9YiZfLAwlec00/973vfauOq18rgRyiM8PiGmTvs1dBJD2TTYLxbmerxbwxiPIi7G6AKgxFv+Md76hrY66Pfexja7zrQx/6UDkMxEaJ4H2VRGT/3ve+9zLGtyuDOPHuPHWK7vdncQSgkqukD3nIQyriPuqoo8ohiU5ND1PZjDOLXoG+VJzuJBdBWb0MY9Sma9KJxuSSSy6Z3fOe9yw6lSfyE10yst7IpNGif/nFyeGHg2Do7isvttQrZehIdBdbiQPOGfQ2M7wkf7TlDL1igfTy6/R2O44TUa7vSiqgihJ6Q+d5551XFY1ta/zw6LtCx3HHHVdlieg4ZD1Z5R977LHzCpsh1LPPPnt2r3vdq/LvjZpGl5zJiD70StEhgAnf6JU+lRvIHk/y937opscMA+A39dZQTnp3559/fj1TPhpFkvKXj6EzvHqnyx7YTGwVjZ7jW4+fvHz/MdRBnhomOlQO20zDA13OU8RevCfd1FeEJ2kc9Jm8pF/0zs6G2GOCWtdPfOITZ/vvv//siCOO+JmhPuk0GPhO4BQZ0gn74/B9pxEESJN6AqkrEN+yIkYBhaGQ+YKXYFTQWrpuRZ9FMpb3Z+tjGBFSTQ8E73cMomoFqAU8w4g33d11MRzUwtksMCrdss86yNvqV7OmwOyN4SBqBoxrkNdwBvNZLUF0YjaB56ZKmrljVa7VrqNRqZlXZhqYBmkrABhGWroCZckf6CzXAfuQBoYh1nkRprYA5GP6rymktoIw80TZFuBYPRw6LPwCZQ+nOZ/SiV8HKJs8p+khZSvPdeeBDP2vBeCPnMwkMz3SnjUWl41KWDO4/GeE9PIBZ7zbu8iun2a6mRWiPoD3ILaOx1Hhi77cs7DMNNYO9Uua0G3GWyDvTNOURw7AF3nkd+zLPc/cj00E0pCzNLZFsGDL9hb29rHjJ7tjH7bfRutw7vP8O6IToIMzzzyztnQB9HeZd+BR+ehyoEda96PPKdzzzhTeyXFFQaeVvaijWR2Nx+hwitgWvaX+2YiS3kbjUItw2SpbsfiSXx4NRKXbEvzMMNEguFqfUWhFUIYndENEq1qzRCFeM1Zp4YlIobdEg7H67YPca17zmupW9wjn5wnDmEumZNcxKkPdT5QwFF2RgdbeUNBHP/rRirbIMu8m4vQe+YvWRWPGj31fyVCPD/mie115C7X23nvvyiP5iDpECmhDhyjbWXRB98Ow5pGiNI7hFOZ6ZwP5yCfPRGkwKnel9a60ItLPfOYztaDorne96+z5z3/+vHcjmjZjyncStN75zneu70YmD/gYqUfkQ5lhCOOkJ5xwQkWyZrKIRsnOb1AWOtDK9sgTD+6JJgHf7HA49uKZjY8GsnpGyrCYi6x8wBdB+8CH/nxPkrdvOHoxr3/962smkl6WtPKUt4gt333UDd8G1BPDqYZLwXsi8+FEq1dtjNe7aEaPD4Dkhy6yQOsDH/jA+n6hxyKv8EneIC9l+6ivtyE/dRa90pAFeaHdeVof6Yz+5aEHKtrEm/zUX0MZZEzvvgH6ZgTsiJ6MGjjIAe1sg+yVRf5sNnrokCdePGPraMVXouFAGoitOef6ioLYKKi7ZGSShcWMXSd04XfSu+6gG/YP5P3yl7+8bNlkG/fJ6tWvfvVsv/32W/g9b1mMAudICwQjw2qt7P2hxRFR2coYRAtaMRGC+eFTeK4VEy04iwJ2dYiayY/cOsiQPEZlWDaKER2lVyZaJXNRYfIiP8/tcDqUXVG+xSXmyltIZdGWaNU78iJz+nEN3kUH6Dl0JE2gzNCZPH7yk5/Mo0E9CnklP1tKo8f+QF3P8kCPOfbXv/71iwZ7zYhs0GdTNLtn4temZKJLEC3hX3prU/RiwP5RegTS274jPSVlLrKvqawjXzxN4X3biWfDNIvE7HVjn3w0REZ4Vj4oX89AFKZHMRqrWjuhV2E/IfsI2UTOf27YKND21cpR5ay5sCBSZGcxWvRsuwu8WW+iN2eLBnL3hz+2mfbHObZkAPyFF/JEK7nZxsI7eo0jOKjI0549XUa5lkfSoqH3NPEXGbJrW8Nke2+L6UbjXbTariM002Ei104fKNPv2NQU7k11FpD7tF51bO7ZzoJFNNKbbVGsfwnigyMjcnNPzzTy0Zt1zz5cFpTlHRiNda314HPk4exYDS7TGISAnjlHwKgZmQoJCEScI+gFuuY0LOhZpPhdGfhdzujJTSVTYeJMneOoyI1Mu2OxWM7QCsdw9NFH16pc+zwxJOhluA/yGb2KclwcqB0v7YnjOuVayW0oQ7cSRhRcDgXkneEXiAMybGMIAW/otCOoraI5O/vJuA9oCl0cDOdnHyi8ZIjHEASnacUuZ8fQ5cnR2KTNkNaIamqY8Y53vGPxb5hyRJ013ATSx7FtDsk7MovzQ4czh81J29AwjSX5299KIKQO4B2Sh3SpJxZMcfYauDhhPGi4Uy+k9Y9yFkMq128Nn4aEg/UvfRa8/fCHP6yhV7QYnrV4yCI1i/PozvPuNHONPzAMpaEBDZogzn8vZ6t0mzNmaDdDUDANEqAPwaWc0B6QjQbRkCT75KDIjl7RbkEh2ZCzfLxPJjn8XuTs3aPb2JHfjk7LFQmxU7RHfnRGbtn+nSzxCOpJAjDI+2zNtt8CCTYb+cnXPXWVPnrDvlpcpjEAmUcxyVAF4DhUTgQonFML4RBjBHkY02Lg3XB2ZeA5imGwDte57zeF5iA/Dppzf+lLX1qRlZW5HKxV1CI6468qv/fjVCLzlMVgUmECTmffffetyqwBH13N2p0VGJndLY0Ri+TiWDl0kJe8VWgOgtMWpWrA2ABHBxoezkY6f40YY+3odOnJ+O4EDJdT3GOPPcq42RtHiEe7b6LJtV4BR8kRM3S9DDtacjhozPh6yomTmDqLPO8Oh13GNt23PYX3lIsXDbTrNALL4e///u/rnAYdpvqAlI1uoDv1yypk30+iX05bQ7L77rvPtxGQjm1oIMnQdxa0xxa8S1cOmzWCbT5s5Kcx1ZCyI/ZAl0D+17nOdUqvnBCwJZvldXjebYyM0OPAM35sCZ1vJ3yFNJ7pOXF0ytfo2W5E+XpgggqNVpev97zfbUm5oQ+kUaY0XZ87O+ILAO2xPX9ApdFMjwryzDtTmw3oWl0G9cBmfTe84Q1rpbvgKXbcG5SVcJnGIMYlkxinVp0j8a9FutIK1p1VKKTBiLFg2LWPUyrvooqxK2JqmGRJwSqJjzkicLuncvoiZLuvikhtsWyIJ++rRByt7ncqVipgR298PY+huLZHjiEYlU9ZPpCm0knn46DeB91kb3vOUHo9QNGl3gge7DGvIvu4aAk9p6Jbq1IbpkpEGcNVvjM7iD2BIQ7bMwADFSw885nPLMfHOeTftjQEiUjRmkjcNbuUP7tSLvq7XJTJbtmosmPD6Im85OF5KhLb5rTYs7IM2/iomuEgkG8ah0UI7+hBH71HJylHHqFB2tDkPniXXAVbyqIzjbrrQCOuxz11mIHGg95AsCEvDbWyQPDhnkZFD8twmPIFDMrX2LNVdHkf4kwi5253hv1AkAj2AIPQlnK7HcjPMIeeKNmzNcMafIuGyJCWrbf5negeyBKtyTNAd89/ZwXaOz+xJT1AwU132tKGJ9d4740FsC+Qp+cmmdjKm1zZLrlAzqvBvDFQeCcWdO9DNOeuiwkiSs5Mt3gKxkJhuv75K8SpAndV+H5iNpChDlGZKNfwiHFnTpaipl/5ySaKj6w5K5G7StWdEmfQIb13k0dXvKiboaGBU4EYlP2dNEScsXveFd2JSkVrHLUIUzRu1gmD5NSk17hwlqAXIw3bEN3270epuGhi6IZM8BJaGXO3N/fDv/t+g3vyIovIKb9zHcT5qhgZIgs4SVF8ZOQf20TH+BNRGRMH+xOpnMrtjrgDP6FdmUFoDvI7jZu6Ma2k0qRik5EG2Z4/xpIN5UHkwiGH79AQ/tFqqE5gIZKWPz3hWxBiuMjmf+qkPPTqPvWpT1VwoofA3gzbQRyTPDpPPUIHjYBein3BNETXuMY1Skfy927sFZ3Ro/vht0MPVEOnQdRr0OMU4fpOaShS43jqqaeWLUsrT/nIL/LZmYHGKe/uCcbovMuZLvGt19iRhjgNNUT/vW5Al0uerYR5Y9CNOoVx+BQiarPZm8aBQWrFd9ttt/oNKQwBiMEw4xKBBmE25xi1cxfE9kIqL3SFRHiADxWh34OkR6sIWyTJ0YpijNFxuCIc17rFIp+ulBzgfWPFoijDQ/KM0rrzMawSiMaXk5H3GUnepTsOHm144RwYGyhbNK8x5wxEhimbTjutHBhnGrvwP67GKg3dJPIFZXMI+PFe5yF20Rs08G6XT+fNfe/F8Dtf4P4iI3ffUJNxfvIP4sA4RT2QAw44oD5Y01WcqzQi5US2vtUYZw/QRB7kiR7vAD7IJ78hUZk8ycl3M0HUxz72saK723/vVUHkopzIN4458F6idEGDdClf3pGNazYvYNO4oN9Hfu96x/i+gAA0nvIwzs85oScNGH5DQxoZaeUhsr/qVa9aAY9hSUNT4L4eL9+RwMF7OdDmcI1fNPdngTLIUE9ZQ+mjvM0NNQ4aLpv+mQrrj3H0OtEZ2UCGrmJLseXuC3Yk0NHtGn8aNwEVmfvNBtUzfIF7QeSVtEBesR/6CY/dn/c6uTn8zDcDoIC0vLqWuvjGtoBDsdW0aNc6AoaBSM7CToa62ZRi7iuoxIjlWBxve9vb5h86vQdhZnuDsAgPXwwQbRFaKlGETICcCufHsYqKjX3i29x9xm68W55T4J8Mw18MXN665D7U6jkZehHlgLTkwJhVcpGB9HGknjkYQwyiVxxQLmPTePgwBdJykIzLn/jgVxmp4IEyoVeUOBk61aCYW590QXicnmFRpTP7yYdRvZDkj8ZUkoBuvN8NuUf2eMB/9Od+IluQX3hMOT6qGybRk4mele1dNmm4QgPdwWHn/S7vzidMbVj+7F2+/l5Rb0PQYIg1/zEtP/ngE79xwJD8nFOWs3ShHWK3aIwtTnVLVpEjuYQP+cmLDOSDDo0W24Uu+9DTy2ZnIngyJTvQyOJRIChPQ1JT2SiP3qb3AR/em9p2h/cDdTTfJQQ6vlOydXVL3TWUZQJFfydIOVNdbi/EjgD/ZEne6AYNnd6VYVC2E1nTx5R+NLsXOdF90sQmpnVqJVxmncEwhpojDENRs0FMzU8OBoGz0drWCmRzr80RD6S1ktGcY0v0zX198YtfXPOQrdK0kd1gsuYoD0ZqnxUwn3gwsboVcmsAZaPV/Pgh5Fpt6WyuvqX8o7dT83zRY/64efqj5a4/zjHf13vmQU/n7srD6svpfeIdlbPm+9rfx7xiK0PJb/S8ag8c8skKXseohDWffERDtUKRXqzlGMZUc+WdwwP9OLtvDjg6nO2v453hvItu88XtVzIMpPZEsR+P90IbnuSBB+Vn7jOYd28PGnPeRyWrufhosrp1GGPxIl+2gw95DUdR9oIfMkCz/ZU8f9zjHle8f+ELX6i58/TvubKll89wekXHaAyrLHpCD56G05zPn7a6Vh7m9I/e2XyOtnzYFv5dK9e+Qt61pQT5ydv90SDX2gz6tv2EbT9Go122opxvf/vbJSs8WfuBPzx5hkb0SWueuPzpBL3DCRdP5ui7d8opp9S6iFFx62wtCH3hFa1oJzNrEMg/eaHLffwqM+sB0DF6eLUvEHrRQZ/WLtALetGR9SqgbHaILvmSw4jg675y5eW+d0bgV/fkJf0IAksOtj6wVQl7weNnP/vZWhdiSw4rk+22OoKmWhuBhtGLrvT02v0JGTpSZ1yjUxl0BmxDGX6jy/vSoQn/gIfY70knnVT6sjMC3VvTQbfWTHm3+xrpvef96bqG7QG6UQ5eUrfs74Y2W3uQFRuiD3bJHtQr/IJ73icj952lJ1cy88xBZ89+9rPr3OW9EuaNAcNTqWFEQ2UMMSZJOEuVh2IUKC0DTYW44IILqkLYtiKVi/Gr9Jiyf5HGwM6LDMbunCOKqPIoBVPbE2ijALxQxoh2a8sHW2Azsl//9V8vR6exYhzSE760HJX3GBHDdZ3K1Rsx7/XGQDpGq1yVTVoOi1O0cR8Ha5M/23pYqESBZEuxGp8R4dT7DFhDJT/5y4fcLUCjJ3Si1540KrAGx31p6ZKxMHp8kjUD8Yz+OBOLi7wvncZe45SFYXEMFmTJy/YKaMIPxxyn4ZqxK6fTx0GxI/bDYfsHLI6Mc8CrvMhNeumUT16ecZgMGm3kLa379BHbUy6bZH/PeMYzihe2rEGUD/rirKWz3YRFXZyE/NFKXrbc9r5rW1AoK+VqkNk4p61M9+XNQaoTbITs3JMfedCha8/f/e53179NWTSHXukBH6msacRhc8FR7JcevY+e2CS+1Tu0oged0pGvct2nTyALaaIz+YxezHyjSPSok/L1Pnrkh175kI9ypbO41EIo+jvzzDNLB2QoT/XL7pkOeYH3HB3yoVv5S5c6517kxTYEMRpKZZx//vklq9iIRnD0wKpc9us9dOLPc7/DA73SkTLcc729oRw20v2EoFjDpTFgj/a8Ym/4iv+RPvJBJ574VGd6wQ99ylu9pFMNMsgH/46VMG8MCJ/hcP6BSMAOlWD1JCNXKCI0Bva1UQgj5CRUFoqx26YWWiQp+vFbxGUlKogs3vve99YKuW6g2xupcASEV5VBZA5+n3POOXXW6oo29QoOOuig+n3wwQcX3xRD6DFQCvZODMwz1wHxSiuNynXMMceUM7TilfKtFORo9bY0AN7VKyBbuhB9T/NDB5B96KA/hpHfeFUp8htUJpUEzWiVXn5xPmgPvYzNWRkMV/7KpSvOleyCVCwIffICeTvwYIUxpwtkytghlaTn0+F5aJmCTWlIyZEzZ4N6C1Og2dbLAhAOX88JT2QsgPH3ilYCe44H/CdACX0B2v12yFejoHFKw4NOebsnGHrPe95TlbPrQoUlS2f35aFu0ZkGxJksYrMQG0KfuqgOpnfDUcAiWSqD/KMbz5InXjzzXo74AOno3jl2wOErN/VW9K3nrOfJJk499dTyFX/0R39U+5KRLblaNR65you9gfpEZt0H+M3p66UI2lxrbMhXnbQimi1p0DVeeI+DJSP2Rk7oJhsOkjzpZKpTNEHXzY4AGtHLD/I7RlmsarcqX9AsYKYbcgmNmwPeYgPRvTLIJfdXwmWGiVxGKDJ3TWkMLlEewyFwRDJewqZcBDA6lZKD9dzOepyozaxs8GV4wNCAaJiTkw9Cd4QiwhsB4Uml4BxFxq4jOPzgU5QtGhfRWWYvemc8jIoBasgYI95Ugi47Bg9dCVEQJ69Mw2m2nFDub/7mb84OPfTQSiNy1pBa7k/Whoo0phpb6LJSZtSnTA7FmQPRiDN4TgO9cTShk+zj5N33W3r34qQh74GegfzoTqVSKdkFXSt3anR4k2caDj0iFdPe9/J03YMP+Wsg0UQnoSOyoxc68ByvoCKhx1CFLvcTnvCE0uv73//+eo4mdHAsL3jBC+qeIRVDGuwa2CR9G0Yjc8g5fLENUDYa4mjJE4+e5x1pXOshf+5zn6vyNMJkK30cYRxSGsYuQ9fyJDvX6pgyyUWDl2GaODdp5U9fHKgomd7lrxzOu8s6iD3IVxlpHLwXeF8az1OO9K7xqjFQZvgC/yetfDKnt9QRiA17l67oXaSvEdFIa2DYFYevHhjWVM96gxG6QT5kgT90sRd+Ry8FP2gRcHlGhmlg8QWd1+2J0EbHsWnD53pkGgM88Z0bN26seqA3TXaQOiQP8g/vEJ3068jHGZ+x181iJC4Mg6vzILLOfufeFKNybbr66YeMYWj1scOMDcdQQG3oZUobWKg0Kn99NVek2TiDqXoGKXN7wocaUyaH0dQsKbMmoPMCw7A2Xf30YxkZ4HEopT7M+SDobzbNsDKf30wK2wAcddRR9eHMIjIf2K3ylB5vygT5wKiw8+lxkXGe+VDr/q/8yq/Ubx9azcxaCZ1u112+fsv/05/+dM24CV/g/iL5D6dfZ1NN8eiDNt36GOfjtNk26LQq2PzwUYErvXvsIVBW8leWj2WjMtbvyAUtw8HV1MjAewH6u57MgrIuwNQ75ZvuKk/5y8fK2vCnDHmh27Rfi9hgOKqa/WJm1XA8NRnCFEkf28mOjqbAR+SKz6RJWWwDnebI+2g8nUYcftHsg7KZNrlnKjL6LrroovqtDgG+Rg+jrq1VYWuZHICelA10gFezUUzTDFIG2sgo/EUvkS2ewO+UL7/oYjTelSbPXEtrOwppyB7oP9fuK5PdmThBzhZImTpL1mbh+ehLXiYqdDtGd+fPdcoO8BI+lKk8dd3MKLCOxcI7QK9ZgKapgrw6f9sTvT4CWYIJKfwJhHd6PPvss+d1MDwmD/T6HX36TTaRQ+oLefT7K+FnNqobmVdLOTKr1ivR2ShwHhEkQnCdFkc30YZ2ujeDmOru6E4aFpEX+LDjnlZOmuQ9lDRv+bYXtMCPeMQjahhLROsjWqIwfIjGRZWJPtAs0hkGcxkZoJvIyCi8+y0KlKeeBD4NnYnGRFkiFsMEehJ6FMpIZEve5KkVl7cyvecjpmhJmZ4rw+F3VEYfngX4oLPwJS3ZKk/XU09NxGWMV/d0OKOKkMheN1y5omXfUmxyhm/DV3pIPgLKS0SfSEqE7zuAYRofwYyJyy/6jAzRJW/P0DQMtGTnGBW+egg2VNObeelLX1r0uu85+eBHHj7uK9Nwmm8void0+5MPunvmM59ZkbLomHzJVLny0xPzQZOM6US+IkSTHtiuPHzXGo1VDT2hEyI/QAN548v3MDTmu47f9vlXJhmRsR6giBb9ol4fsNFhXN8EC3IQ9Rrn9h55G+rCX8rTI7Rx3KmnnloypsdRyWeve93rKtqd1sXRoNVzY/VsVw8iSN0GdiI9W1I2hL8g9ZYOp+lTL5Ttg6eI3ncbw0h41VszvKMnTB96R2yfXTmrE2hx9DLJJHWCnhLxdjqViR6/e28E8M4HsQdDkr7D0YthX7Q99KEPrZ4HeuXBTqd8by8oD2/kiC8HfdnMk28APMdG/R8FGRoZYE/uBfJxuEcOnYfUP3KK/FaFIeQ1wyBoHl3YPM18YEjUuL0xhLjp6qet/hBWXQ+HUPO90TYq4tItbnGLWuELaT2JIhEraLmHMOs6kdVq4b1Rkao8vQNRmCjWlMbRBawpkFb82nZCpCoqMkUOnSCitBgowJe8Ein5PQzrMtGG6xz4dkiTQ49D2eaWm4Y3nH4tEhOZibI9QzOIRHveokz749giYxhtTYGUp3nerk0vHN39eaQC6M2qYjLwzIIiegG/I1fzxPUuzMcnO7SBMpIfmL5soZTel8jaHO3RuNfiN9N9s+5F3g7vA3nJl+zQEtA9vUdfyrcOgZ6cQ4dndOgMpk2bSmkRl97FLW95y1o5bQGb3oG0yowMRfLSmyevV2D7AfKRhs1ZwyON6ZhkknJMpWWrgE724bmoUW+o8+IdEbopz1aMQ8ogh67PDvKVBsgh9uPcfwfysphMFK8nY02Blel6/SJ9azgsQNOjRT+Zy2dHgGzQZyW1Xh6b1hMZDrMWsqGDDLPuBqxP2BH0kSH6ImvXdM8vATmlbrA7G0Dq4XlP3XPOQSfRT461wJo2BgwSkaBLa1415UQA2xupREBoOXN6dlA19GJtgEqicmYYyyIje/OgPd03QLc8t5R+ysE3BSuLkjNkFKCL4zBkxkFYDcu5MFRDASOSqkplO4HuaKeKR7N8p0YyheEZm50ZhuBgDEsoT2M0IvZypPJhoOEX7YwWVHLOBiJbDkrjoky8AgcLo1dTDU1osUbBUKEGQXAQXaU8lZcTlRdoZALPU6ZyrHaWN+c5IrxyRhoqw4Ad8gu6Hea+4SQBizLx6rcgQUMzIrJKA12edJOFVMokH07RfzKMaHfe5fcO3pSFRg0e2GNIowHSGNIYUdx88zi6Rg96N2zYUCvXDbmm4QULvNQvyLCShX8WZrmPvgQWQNYOeS6yjUC50Td4hx4tkrQ+RCPDMRlm1QA7bERnSIYNk2H0l3Lk0Rut7QV2keMtb3lL0awu29qC3QlOba3CB2i0yMKCzDWOh5cFeSgzdkwmhoH233//+g1oT71g02zBeiRDnN7rddwhzxxrge0mCeOmBx10UFWIHYEIOYhRgutsk0xwJ5xwQi2Qs5iMozYubmwxUCG2RcjKQw/lpyJ2eJ5nzg5IpbFlgIbK6lEbs1nwZjEPJ+XAi8VRotLRHa9KOAXalZMDNDQiyoyb6wFoHEXBKdt7iVCAA+Xg9VSyolx5Viz77XzyySfXfWPCZAvGga1yVTaHJhomV04/iM44d41T5KLM8BTZoIszxLPV2RxQnnF8cZTu/eAHP7hMQ9ARnaIFfWwAkhfeVUpIYOAZ+cjXtwY9HttZ0AmQj+8q7B0is8BvjlTUrpL7rQx006Oeop6hRpJ8yFV0a68ZQYGAQXn2B9OY+AZnSxH0gLzwhSd60jABmsND7CF26XAdeWiMOE62hQ/1Q4+PMzLGrpGTlnx6wKRsC1I1kkBvvS66jjx3FMg3vTo9FDIha8GPgIbt6N3d6EY3qoVzlwfQmPpDRuzVEVnp1fi2kt1qpUlddtBFP9YCa9YYIBAwGRA8Z7UjEIGEjmAqKEIlXN1yDVac4LWuda367TknPc1nJURJObqiHJQs3yk9QSqYyiTaNqyENhU/But9DsNwCQeqK8nADTdZJa6h4HStvDSUYHgnDZGzMhJJikrQyYkaegFlS6fCu/Y8Ttn97DUTkBWISjUsolLdcsNOIkkNLFkzeO8aJkljIb338WKoJ3Yi/RRdZiq5NJxvGm2/5SNSj6wDz5QTu9TA4slvEwB8CJenNBx4eOp23EHm5MwZQyJwTtPmfSp0ZAbKJ0cwPEcWkMYCD2ShrtCPnoJtHPQIwTN5TB2qIRgNTLYdDzQWouI0hvgJje7ppejJ+KhqpS6HL0BQHzRyGqXwTueOyD+yoWMNhqga3+AjPOAdvTsaykwDAJF5gA+2r8HzTCMR7KiANQhtZK5OTGkFjevVrna1eU9Tmhz0kWMtsWaNAWFTiHNg9knGjXcEGLHK1aHSxUhc90oV4wYOrUO6XqlXgrwcUdYUZBP5oFP+aM0BKj6oaJyWIQtDbZyIvDenfBWdgzCWyylzxoYZdOlFmxoJTsCGbOgIb2kM3es9ghhol5F30mj1isfZSKfRMgaqSw4iMnzoJVhqz3kYdsAHnn0b4UQ0ZioFGPu3ZUkqKLryzcm7ojlDLhw/GjUyeBBJKyMgyzjBDhvR0bV8jdWb5dL5DuIQu6MgY/pTUclZ+X7jx9bSnrvXZaQcSBn47g1BhzK7zcUewH20xH79Tt7yyX1lo8GQl83pDDUKGDh8jl8DoCFgCxqGNBrdtuRLpsqb0ui3Hoph1tNPP73uSX/rW996bhPxAd3WdyTiB7rtBt1uYcrfjkD05vubYVPIPbYu0DAjkS7ZK9Cpg55yrDV+ZjbR1mIQVzM3zKSAYUw1B9xCCrMetjeGoC4zI8BvrGX2BHrMMBmVsr6wZ372qAw1I8G70g/jmC/IGUZVz6TJveWA/8x2yLlDvmgxk2CKYbQ10wBNowLV6myzHdBkts6olPUn7YtmBnjP+32mwSI6bIFh1oz59Gbg4A0tZsqYA2+hm20TzOtGJ1l4f1Tk4g39ZoCgKbIEZUfGZGuGyVT2FnuZT+7P/g855JBajWp2iVke6DeTwn3vytuCPDNxgDwyYwQdZDCi+ZrDnrUX7qPTAq8RbdX8cnkEaJSvVbhkO7rnxfdwZvUO3eJrVL6imQ1HPsojf2nkIx25DKdSMzZiRzAq8nz2TmjFn2v6cd31H3lFnuoPunIGZZMl2SdPdHpPXmzT7CfrLGwDY7acZ2aNmclktpJ7ZkrJRx7OgI8c9Is3svY7IAeHe55Zvf32t7+9ZivBaJRKDqPhr/UGFu2RU5fLjgA7YXfoxEfkjBb0k0m3pS7j0TiXbewosAMrjs1EM8MsdQmseTFzyJqZs846q+xa/YnOgq6jtcKaNQZA6IxelgzWtYUjFk9sb3SnBMpXgYBAUxljDKASuu8emruApQVGNc17WxFnGcfSYdGJKbqmwpr6yRBMK/R/uBxBjiCVuzsZv3PkN/pVXOlVjPBkSqwV0RofK3e/972f7ofD+XGKpuSZDmglOXo7OCppTZ3k2FzLnzydyZ2jIEs0e989y+8f+tCHlhwc0YlpiBom75JLZJ68/WZjycsZDSqTRU8W7HmfY1SR0M/J9YbfAiSLCEHZ5CDvKeIAyXW5iidv70pLxujxO06HvMk6iANCB/o9cw99kS1+3McrOUTXGnNTl00z1bCSiamSnL0pufZbAlOYwXN5ZprxIqA5ttjtZzng0/RkjbgGxnRswKdFfaYWC16Ujc/Q3/nY3ugOH29+94YJr/Tp7EBb7Gx7ossCXaMnWcGX4CU0kS97pF/TdK24NsXcO90Gl7PHbcWaNQZhCFT4GOEd7nCHMuQdESkk8mIABE/JIrg3v/nNNZ9XNMo5xREyYvO6RTqiZfPWgbJUJPnhK8a1LdhczyDKVpYegE2/RHIqnYou4uKwp4hhOZJvdDA9B5HRFNEf3clXGr0Ic/vtASPqRY/IV+8BP4z54IMPriievFKpEgjIQ5704fCb7MlT+tARJ6lsevNcOnzJJ/pCF0iDXjTQp2sO1jkBQEfeB7SxTb85XhE02jQgfj/4wQ+ey0A5yo8Me/ndxoM0PPKLzXjHgV/BR3rOU+CVHKzwlk5jpgeDL78FA7ZisG/NfvvtV401upSHnvDofTxFz8pGC5rQ4JiC3DyXj6PbjN/AwWukku/DHvawWquiQUq9QZ/gIr2FyHA5m1tL0Ac+lUdm5BwdpXzyxcM//dM/lYwgtre9Ef2kvuqh2q6H7GIjaPWs68h9+okeoOtnLbGmPQMMOzDljBELkjQIj370o4spSolggBG6r9JtK+QTBxEw4gc84AG14MhmdJytsu2XsmHDhopmPvjBD9ZCNAvkvB8D0qOxj1JXxNYiDiIGKgoI8I52hwZLF5yRum/xDpp1H7cnlL05xKmjXw+C01HpdLFtqyGKES3aBoEsRawMPc4qBqwcBs823GP4npO7a7rplSFyAelXqgjokzfZTR1fnALZc1qGpjRwykSvxT3oD+Lc5cdm0Rm7DdDmecpK+WyQDqWn72lDoVwN7Nlnn13bEWhw9XDIjnPiWG2qZwhNftNyA/niyXONWYYzU8cWOWL50UHuh7ZAncHXIiepN6D3aJhDEBV7BoGVhsoCvk7LWjjc0Iif0047rTaV5PA1PGyRrSnjN37jN0qOethpwDqNnVfvul7JptYCcfJo0YCiX5C8M2G79AxyTfCcmJ34DH10iNCkicGsFTodqQjGmDl/BiGa0TBQiooo0mU49lSyMZ9KJA8rPBmT1bi9omwrYhSJngL3ReGvfe1rq8IZyhDB2LNEBKGSbU+sZAYqt8rGIXJoqVyp9HStJ8HJWYVtZ0mNBcfjHb0IjtZwk5WViejpSJrkF3hGJgkqkj6/6Zgc44Q5HLp2KG+KjMsDZ2YV8Lvf/e4an7XqWM/RtsscTOxn6iRB2WhGC2e7yEmTT2TkOfvz/cwePNG/BoHD14BaTS1gCtBnpX6ADjTJj92koUsEjCYI3ykD0Knx865rh/Tokk7ecdSdX/VDGvJWnvLVWe+Sm+Ff9Ou5RiZsgTMWLKDFb2UIFNYC5EdeAiTDVRwqnRlepF9DhHY+8C0owRO7ICO8QfgTxLApvPWGa3sijaJG0/CPPcn87vq6PLGmPQNZMZppN/Gggw6qD0+6uIzLkS4dJN22oLf+yS9RmDN6jCurdMZXGYGdFd0XlekliMjx4F186Kb7SNkdyVohUQuQh4rHOMiJ0zQsdOqpp1ZvZZHDWWusZAZxkNKp+L2Xw0kw5ji5Tq+0jF0vyzYFNm7TYJCpSsrpcRZ2tfRbZddA00+HfOilVxq0pHGA/k7KjZ2xAXRxZAIDw0m+XRxxxBFlFz46c2wQfeQd+cS2YxtB5MZ2bB3A9tkNB2X4zNYkAgqNuY+Uhic4hXywTFnQAwT3HbFp4NSlxa9z6IgTpw/30Ovs8L58XEd28oms+nUvv9+HXkfZrjwXOVC9b71tGztmKGatQNZ4NPRLtmxG0GQSAProlZPFq7ScvHqr8cgWHxrQyE7gEHmGt+2FfKRGk2Ff3+gAPWhEz+WNNW0MVEBMUViiDRBxi75UFugVwDvprm4LKDRG4BzhpqIYo3vTm95UDdKTn/zkir7MvlC+59Inknn+859fUS7H5KNkooltgXxhWiHj5NCtoTLjx7NUNIafWTzbEyuZQeSZBiA67GPGQA+eRQ/oDu0pI3kBOdOF3o/uvuEbPJONoRvDJiq+yJ1jpwvP5CG/OP1U7A7P0ANxbByHb0jy1UCJJn101RholDKsIP+ud2VxgvjV69GwOdCrBycff/pje2wf3ON8QH5oUenRqiFc9G2DraJTOdJqjNiC615nIFFyd2T9Wjnknqh3+j7gSbrpfUAjWcgvOt8clK0xoU/7ApnhJG9yXAtHG97QhR6zyXznI3ffUwRQxx9/fNEp+LSHk52ANcb04puQYTdIjwq2R6C3CGSNbntTnXvuubNXvOIVc5lOG97LC2vaGMQAUwEpL0q0mZVpppyxSg0iSobancO2YJHBM1D5i3hUXIoXmaFB5edEGDAaKUQlFbkyIpuz6eL3Sra16ApPpU9lQbM/uuEUzTKIo1jEz/bCSmaA5h7150OsQ+Wid7KMbjvwQYZ4zUGezgE9eV8+nCCnS18qvLF10bb08hdxmuXEiZsSa8iHPPGgLHmnAQL3He5ztMa79VBMdeVQRe4afWlCk/LN6NBIqLyesSENn+ERzsfhWsSHLg6fA408RK2Pf/zjf0YmaIwN4Ju+8Yy+yDdBjPveTy8l0a7r7tQg7wB7I090k71r9LkvUHNPtJronT6l6b1VB/2GhtTvlJveLSennJRtppg/t9Eoeqc3qlsLtKBdeWYsGU61TTn69CQNw7EFdBx33HFVx216qF555pulf+wLQjuEv+2JyC4NE513me0MWLPGgKExpsBvzDNwBqxS28+eIBgtJUpDCd2ItwVYSWWmbJU3vzl40QQjZlipdImwKAsd0jMSUaohjDUSz9wY8KwcdIReDsEQkSEMtIAKRp5oVXG3t9GsxKcKg9ZeadAlujYkkIoVyC8H4D0gi/Cewz3n3khIowxn+iILeqUbvUzfJpTvt8qvcReZ6wXqZflOwc5Snmtnsg29eq2iWJMIlMVmpJdGj+Q+97lPzZiSr3dDUxBaY08BR2Wo77DDDqsxdD0bOveuZ/I//PDDK23GkoF94JO+U6fIPvyBRurDH/5w7SYrKjbBAF1oYVvREbvScEzrV3SZ+oqWyIajXzT8g266kTYNr9/QGyX6AcNihspgraLvHlApvzd45I9GutPY+zboWyUZmvlkaNj/VaAj9Z8cIuvocXvCn/285z3vqZligUBUMLMzYE17Bh29tRXhiagOPPDAGgc3Q2JaebYVMdZutAylO6EAy93hMIhUDHTLQ+VgTLZFVlEzlrq1YKRokTekIoGPxJ4bvwbP/EaTIYg4ge2JlcyAY5GG3sgGbLFtjFjkrmLibzm9xsnJA1+RN0Q24HmXUdfTIhrz3Fk0b9ti47HGif3mnOTPwXEE73znO+vMOTvrqaLZOC6nQM8a5KlzkA+apxEkWvHlPhnFTkSlnLCo1FRcQxgaLUOQvlGRoWELW1lneJKeRbAmECRY0FCJsOWHLukNdfmAKwLXqKGf8/OnUd5JUIMWQ26i/wwXQbcp6xb0EIy/4wEvicADdYJ+oqM0UtIqm2ymwYBFaGbx/dZv/VbVxW0NZrpsQZnoRUcaQPThv+vO+ge8cbpkbPKCRtR70qdx2d4gQ/ZGtr0Xxkb7MOvliTX/ZoBZhq6SUFA+nIDeAeMwFdHzRRHI1kK5FDt1nrmf6AcYRRwOw4kDE31RkvR4kS7vbCvQQR5TJ8MYRJ4qfRyAchnqNO32xEpmwIlx/NY/gAooIn3MYx5T/xtNbgH65ceZp9GLHgLP3cOnd/2e8svZOOgqjkA6v6XtDWogSjWmLzrUeyBfulcZ2SFHywl7X0QWB2IKMd70AOLY4uymtC3iLw4SOC7TK6XhoI0TK9fwBjlywPgRHBn+4iTQweH7DmGFNj68a5abRkS9EWmjkzMzHVXjQBb+kwEdghbDjPKmF0Oc+MaDdOQgTXoihsrQ6duM1cqCHzY4DaS8i2f3YpsgbzYdeOYex89Zy5MuYJGuthRTPQTTxgk4XEEWHvkb34n865oV0r4ZsgV68l70tj1hcZmGaMOGDaVvtKKbf1nE0+WB7dYzWARGxfFRhgiIMIBBMSTOIZVeWgYkDWFFyVdk9O60aNq4oQ/rKr3phficGsa0iw+9EvbKCUlPbnFk0kvD6FVSM5S8r9G0JJ6jsh4keXKSGm6Rnem3/sdWj06Ui3568k1FD09+9NRpWAR05ADvdF7lmXziOKTFH1tAmzN4riLrBfjwLPpLpebk0G88n+M0XBG+ODlRsmELeTgbJhRAmPqcGU/SkY3vEoabfAw2FOaeihygDY1ollccqQpuDr6pjxyRg/P2YdNYt+Eh5f7e7/1evWMc2fRmQ0oaMUOpDvPQzXAyvOFaw2AqpUkGegu+SZjFZKU6PXLy8uRoTOHVAzFFWlnSkBlnZHsYdGoo0aUMK95tgQBxruFlUeQ/RRoYZTu8Z/W8HhGHTNexyVzHCa8m/9UgNIB6IEghF3bqT5o2btxYvSqQVploCZ/bgl52QA7qXmYrmu7Kv6X+prezFuWvCYYx7zCMylMbbPVihyHMNwWbYhjMws3GrsgY3fX5Blr237eJG7nAcHbzjcpGRZ1vXkUGoyGZp4Nh7PPfeWd0hesceF+ega2rbeiWHTHBzpd2OR1RZG1ONpzhfEOzEcnU+3bCHI1BpY8+bNRm62VleK8DXXjs9E4h335M4d3hxGoXTWXZ6tlfi9r1019wovvYY49d8t8A9n0PvEc26CSXyICdub7ZzW5WtLmH7m57no+KWe/b9G848dpO3KZ//nzHlsJ2YrUBo91XbSY2GpD5fx+E3y6PyNNWxMq0UyXZogeNdl+1x76N+vynhQ34bAkNdG7XWn/ROhq42tZ49CDr/yfoQ352Db373e9esgG02/nUxnFf+9rXanvy0ZBUeaMxq515O6THj78SBfyPqHpuo+x1NcB7T0t3cKc73Wm+pbayyFva6HxqO1uL1IGeNx0CveY5kHsv1/NtRXSPR7KjO/jxj39c/3MRG0UHGQM5j4ahrncG7NCewRBYRYAiEF1mEYoWUrQwFFLPtdQirfQE1ipquLzRx2yHIRafPhpnyMwQijO+yYEMdLFFpMEwsnpu6E2vQh5TkCOIcsHUO++JRkWYptwBGkalqAUwopOszjaEYbxXNGdxnm71i170oppZZVw9Qz34scDIMEciwg5m1Y/oE9DdDzD04duS7xA+9ovWlWU8VZdepCtSF+nHHsgrvQi8pGeR3sVUPmzPR2W9AF12QJf7ykInPhKxdoxKXHKiG98jzDASlRvCQYeZYKJ8w0zy9p3ALBe9iozbB2SvhxE78EHYt4vhSIqWDBvpDbzkJS+pXprhpXxw9o6oHq22LqFj30K8ix/DI/4iEx3yZmOiZMNBInUfxtFEjla8ezYao3m0TpZ0iq+uo9WCjLr8nclLhJ6eVWxc/XadHvPWInWDDkG0nR51nuEn5cZucm+RzrcEZE9+5EZ+bMVIgCFJM5qsdu/22oHmLZXx9sAOawzSNaIYQySGHTg7U/rc60MhBEs5EdzOIqxtBYeiO4gvjtd4LQebbmKckjPDIZNUzEDlMTvFfwH7mJiZUGSrO2pYQ36ckVkrGgW/DQcYivKuZ6ZEqqDKt/7CcBWYVWOo5Mgjj6yhDo2DoQs0+69WDtksGWeO1WwcwzIcCz31Rh1N3fg9N5ZL75y/brOPvWjLegJTkM0Gkn8cxFT/ZKMceW+uEnd6yFceGjBDJxxldwKuUw5nAX67D2nMyFKaNIqe05f8OXcznDTWhnLSqEUWZMQhWshoCEv+yqdnelVG178pr+RrYoG8DREJKAx3WGCFf07Hcx9I2QL+NBS+l3D85GkWnf//Pv300+t9Z7CKly1YqIU+PBgKFDRAH9ZcCWhGP9mRiTM9O2swBRbsUwMZ9O+Ja4H4GCA/NPEtGiDP6KHbi8Y3drEWSPnODg2AoVb/w0y/yvac3sk2weFOg0HYDsFQys90x4YjquEJ0L0aAqxr0J1K124otc67Cl7xilfUv5fBMNo6Oo+jMlU3c0Tjde1/AcA9MjFksWHDhvpDm8h0RNXV3dctddgTncyH8ym5Gq4YUfbSaFiqPPK2/79/0vL/AIY6RkNReYE03htGXH8cMxx/pXEvdPgHrEBZHf5Yx/8q2EvfkM6BBx5YQyyGTPw/g+EXwxfRcYey5acscols3BvOuH5LE0R+0pMHmU3hPcMYhuVGr2fT3Z9iOOx613spO/n47RiNcuUxzdsz9zpNGSIJhiOvd0fDV/92ZtjJcBC5OPtTHH9V6RmZ0J/08hs9rxraM5RH7iOQ2pTrT8sOIqMp8IF2/wUxeidlN+gjd0NJ/jtjNExLo7dUtCh/CvSsFuwFpjLwZ02joau/esVbB77WEnTZsUhn2wt0rTxDgWwtNhtErzCl6/LGDusZTFth3VS/fejzEVBkCMN45613rody5y3+FRXDACqSsxmaxXeGXcgkwwd4hPBpCM1HRQtpfHQUoYvE85HP1EhRvAheNGlGCZmecsop1eMw3CIK9SFSz0IEqMtquEE0nihUxCJSdu3jmujcNT2hF43DaKtM+TCX6HA4lBoeydCOrXd9WBb9+9gqwvfR1KwSH0kh5uZMJs6OROPBNFrrPQz0OEJjfzf5Qr+fHpbeiKER6HaFZs/TAwjkJR1bze9Rweta/soPrWhyjx4M4015guEMyq4zXCJqHs6wtqf2QVyPyVlPwGwjw4T0QX5+6zENx1/0KI8OlKOHoEeQaYp6JGhAH5lIp8en5+g99UpPzwdWOtMLMZzB3qBH7eFrJUzrKdvSG1I2udl7y0d19qJnSubSo32tQDbkBaGbDceXpPcSe6JL8mev24oMB6qjJmWwNXpMzwSv+Q1kEl3sDNhhjUFXEuOIATB+3alPfvKTZSAwHRrZFaBiGBO3SEilBcbAKGOo+Y1/s3jsneQwK4OT5/jtXWQMWFdfN9x9RmjaHBnLy3cBQ3EqtzwtdOEkXHPOKiVwGKkEueasVBgHA44TUGn8EYcK7HuCYQh69A4HZVqmIQCNiWGjIA7LUEic99TRQ5x4DmnQkEqrEqlMsaEO7yZP78ak3csRxPbw6X7e7fniNQ1Ayo+OOnq5gFfv9SFP8gLDLckLja6llad8Uh7EidkzaUTY5cTRZDjNMB9dkjXHrsHVUMiD80/Z0ssHn/glSw4++kaDNGQafiOXNFZoR+dqhorkoQw26Jo8/YbIjlO2H5QhK9+c1HGOeFu/F0DK6DoJTVNI48BbZL/IrrYE+CA/w3rqqYAr+lb3uzzQ5UAzfS2i8fLADmsMGB+o1MbKFJsIx8dkHyqtqhTBMshUDAZEyTuLwLYWHKi536IijUH/MMxBkQee8Sua8k9degY+DOoFcNacsVXKvrNoJBieBpRsjSH7bSzcymkNCCP03cBB7qCSK48hZszSNcPlgNJoKV+EqqFRWTkaHyB9EPWRVHTtfXl5r0eE3UGuBA4L/fLw3krvxpF2xBEsgvQO8nWETvLgjFLeNABJObFT7yWP0BokTWw26M6o0xhH4CBbOs93A+VIhx755X0OK7Rz6hoJvUcNhV4FerzDIelt+xbku4RvBp0OfLEljYn7HH4fxwdp0JIIdnPyDdRZ9JFZpxXCX3ob9gRT331D6PVgW9B9BsfM+ZIJOvCiTuELL2js/NBf1+fWgCztN2Txn3oa+Xa/NbUBZbKlnQU7dDbR5qBLJWoW9RrO6N2pYGpkqzHStQQj4zAYk8oPjI5iIYpPpZTOtRkd5pCbhYL+VA4VkZONMcpTfgzbWgyNh1kmek0aSVG34RgNhOhfdK4B3bBhQ5WXfNGpYliCb0YK4zSXPDL1nEMgc885FkMF6PAREo+GjOz9k3/OChJZh2a0AtqtHbGFsCE/Eag0dIaWqbMF7+JXw6Wx1Ajp0eDDnHp20JEyEzlL5x56IjugD3QqN/aS2VyxGWd50BH+8yHe/TgVICsOO7Ynb+843JNXaEJLnkGcT+gif9fdBgDt7skHuu3HyfXypZO3suNgBRhsiU2ZNKDHTabkiQe2iX+9Nlts0JEeBbqn9ChLOeSa39KsBuiSJ5BDd3bKQDt+9HzNYGPDZkORAfrwrlzvkSdELn7LH+Sd+9sDynGkTpNjGk2ywSNdmkxh+NaWF2xcXYPIs8sV8ECe+EveaaxWgvfQRH5oyPux0YDNRfbSo2E1+SNup8Ell1yytM8++yx98IMfrN/5WDaYqTMM45//HhV+zT8+LQflBr3MUVnrPIzjMh+EpBmGXfO3R3Q2n4ON5im+973vbbr6V57f/OY3zz80Dcdd51Fh6jyMrs6Q8pM2v6UZUf3SIYccsjSilZqT74OWefr+0N3ZRy70+aDa+UOjD32BD8Hywp9nwxDnvOJzGGnNpfZn9nvttVfdD+jK88B74QPN5vL7mO4P2n10lD+5DYO+jKzwpdzk5SwNOKNvOML63csbFa3+GD5yGU5zafSUlp70pCctjca57pnfPxrLpdHrqt8QeSqzyxtNyV/e4QV6Ovc7reQQu0Ur5N3I1W+H3ym/Aw+ehZfvf//7lX44m/mc+thKZAHsS9k+6p911llLz33uc8sW7nWve9XaiUc96lH1AdtH6vPOO6/SdxnCInqCTr/rDr+jJyAzv+X/N3/zN0ujt1nyh9QrdSXldz4AHcvJZ1tAd1N9Alojb3bZkTpincgIzuqa/FPXwfvyxo8j/LArWC0f0nW/w44h+fgt/8h6a+Sz0zQGlJDKbobDC17wgk1PfirQMNkhfYSxI6AsFbArpTusfg33v//9lx784AfXNf5iaHhkIHEOIO+uQNf5Hd7Dq7OyYqSArgsvvLAWN41eRS32MVNodMdrNtKZZ55ZC6QuvvjiTW/8K9AV2rshp2GSj3wZfxwemryHRoubXvOa11RZj3/84+u5mUkveclL6tosmjh6ThgsplJxRs9m6fzzzy+ZyH/qTLrjfMc73rE0ItpyYHg/5phjyrF7F49vectbqgyN36c+9al6j4xHVFTXKrtD5X3lK19Zs5rIzYyrpzzlKbUoz/OO/J46We8HZJbGNLr6/Oc/X7OANOoQXeIndhC5c8xkrMEOv93eO03k42ADGoARXZfekyen8NSnPnWuZw29mE+Di8Y45zg28hk9xGok3vrWt5ZMzfgiI4sNn/Oc55Rc2Y7GhB7RE1uEbrdTeKY8OoLYbn7jIbPM5N0RPkH6qW2A58lrW9D5gV72FKm3FkOaZSeQIRtgC94LrVPZJM8831w5HcqMHaTe5Tr0uBc7ALYq/9juSthpGgMCiZNlPIzyvve9b02ZBArvjLqOQHcElN+dL3rdiwIYQehj4KOLtvS85z2veOoVGzrdUVigosRAnFNpU1Eo1vS/E088cenhD394NZyHHXZYRfp+m7ZoGl8gP3mZjioCY7Q9gu09AJD/m970pqUjjjiinDj+nv/855ejh0UyN0XyhS98YfHLYMnFymErYznN29zmNjVFkoPUKyEn0xrJhiG/+tWvrhW4ygSNiBXHeogqW6bhcpjyucUtblG/NXonn3xyXV/zmtdcOvvss6tsMjBd04psDbKVu4C3448/vmi4+c1vXs/JkiOyMjiypku6nlYi9EYvVvaCBjPTo9OQWm167Wtfe+nZz352NcppmORJ9uwa5GXKb1ZSR8bTculAman05OegO45fPg49oJvd7GZLN7jBDUr2YPowpPHS+7nDHe5Q9hS7DZTR9auH8KEPfaimEGs4rZYmV4fGkw16rjH3HjuXJzrxOrV7NHaEL3jGM55RMmUH3vMsCN+LMK2XWwv1UF5B6EKH+w50ONiJBkyPv9PWdwCY8r4c5E9mzps7OoygmA6uwffuZz/72erZPeYxjym9p9GH6a4Em8NONUyUiMGBGYZm2MG2DQTSld6vp9237QkGHeWkEkJabc5JZVTJGcQ0Ta7l0Q3Gb4bFKDkMlfSLX/xi5cfJcmAiyIMPPriiNV16lVBacouDl7/tCC666KK5QYie73KXu1SltrWBMkSQImxOXBmnnHLK0v77719DB6961avKiNI4cxwaE0ieILrneDlWEbD8Xv7yl9czPQMRqajSVgpotdZgzz33LCfOsdOvhsB7V77ylWs9AzkYOtKwaQTwxsHhj7N0rTKQnXzMnefc9t5773oXXxy+4Qfp2Y/hiDgpjdBtb3vbopGd/e7v/u7S3e52t6Xb3/72FQ2TR6K8YOo0QQ/F3Pwb3ehG1RDHJtCm90NHoLEh39grHjVcgQbP+hD6AemiS72E2EvgeYYINARp+OmK3tCvUbSOwzqVU089tfjXMyRvPbhzzjmn9MkO8Abf+ta35jY8BZ13Ovy25kREzDY5IY6RgzTkpFd/+umnL33lK18p/UHKiRx6EJK8yUYjY6hY1A2RhTN9kbMjfmKtgbfQGqQegK1c6D5DignSFtES2vknPE7l63l8QPha7uD8yXaPPfaoOrRhw4Z5cCJ407ulc/VsitCxEnaaxqALqjt6FVhrx+AMR0C60tDT7kigiyIpSnRI4Rz2ox/96HruWQxLmihdq50KAvjWcOimG6YQyXFKj33sYysaY3yiYYpncHkX36lEuacczvnqV796RZvKl7+Iy1AAp5N097znPUuenGPGkUWkGhlnPCkTn+St9xEnJF8HJ6fx4PjQ4NsCYyQLBspg8f20pz2tom/PbnnLW9bwAx45YkMT+LcgLiBH73IYeNbYaCCk0YgIDkTfFtZpbDRcf/iHf1h2IlrVsHF66NdDwSs5GBLSMKo4onMOzDcTvGbvGA1cHH+GyTo4UPeN01v0x9lyXsrRo0mvQ4NCdvSZoTA6O/roo2uxJdrYBqciL/S/4Q1vqAqNdohT6nrONbC1OEl0afwSCSpLtK1h0iPj7C0qA3oTFNhfSQ9cpE+H7ADNIM+pg6Nz+aJDuk4LeK5XrIdy0kknVflkZC8pDT5Hr3cqWPE+O+z1N/lZIEemggcjA4ucGbuaOu1tQeoQoI08U8c80/tDj/240nNzHw/QfVLQ9TflE0/hSx6pU8sdhun0sIP4A7juda87t9/YbC9vtdhpGgMCCXPOBAAqMIh2RIA+iIpKIA3I1Gi3Fzg5QnZE0Tb+MsTA4Dkp6EZK4RTHuICzUfE45nzAU0l8gDImLpqCGFnKSmMiv55/eJf+uOOOqygcPZxxKrao11AOgwLOTvkiS2PKoMvJ0aYHIN8YFEMThYcmwwf0w6g5M84ejNtzxIBGR/QYI9WwaYA4jIAeOc3wduihh5ZzDfBDRp6JHskQvXgIjbGT/iG8N8ipeBoj0Xs+2qvY0Ss9BXFMZBU7SzRLlxxdQO4aFkMckJ6JISqNjg/VhrYe8YhHzDemS1nkzzmTnQZB4+QjbsDhKD+NR3SKPmWANHjVk2JTAgE2xvkrXwOv0WRfGlURPTkpD810EtCxMqI3UJZDGeyi188gsp7Ce9LjU0CiB2nYMauv9aoEIuxGGnrHD33Q9b3vfe8KRPQUNLCx90CZDnRv7lgt2AJbkafyBGh6AmzQsCmgbxG8l3pKVxCZkIN7GkJ1odsaGwsfyx3ezwQbAWICM/ISFHQ+Y6/egdjMSthpppYGQ2A1ZWswoqGq6XODuZpOZarUiMRmVk5aXWuTNWdpd8QUU7RlSphporb9HQZQdJj6iQY0m/5pPYH530Np81Wm+DD/2z4tptOZamk6nTwBH/LOeRjmfIqhe9JNp9MN46uz+1aPZhqp6XneseI5U1SHUdWUVPPPLVyy3711A9Yz4M1U01E5Z8Pxzqetecd+NaYrWq06KkLRNCplTTccFWb+/8TDodWmdsNZ1jQ8adGRc/iyXuG0006b/eqv/up86l3MEB8WUqEF/6ZLooHsMsUTrZHLcGrzlbJdXrEj+Xo30/usyzjjjDNq4ztp3Jd/dACj619TTYF8u23RN17k653pu/SMTvbhXfIdjq3WA+CdjsjHe2hl18MZ1Dt4l9a95RB5kanVvBYfoiV82xNpOIXS98aNG6ssG915hz1ag0JP6BuRZm1nbuqz6ZEgr0zbzDGF/PvhnegQX+55bzq1lP49z1Rb1+gbDq30bV2L9CPKLp2RuynOo7dR615GsFJ7/dg7aTjF0kOg7M1hER8d0TN67PtFrurmCI5qWrhnDvRJi8fwEZ0DvSQtXUVG0lpfYbW/haLW6kC3zc3BRoJ2E7ATATtytp5EfWAvZI0uMvVb2Xgm8+mU7uWwRY1BrxgK8arfcQwYM59VJUNIBBKlqUjSeS8OHwhYHhEuSBMFxpmkHDDXfkQ/tchqRK01d5pTUB5hcBLKV0niGCDsEpqDYJWvQkrj3dFyl3IpcVoxGcn73//+WnY+ovraBIwhm68/Wu5ySByO/eY5NY7PnPvIbTmgy4EmfCt3RK31bhxAfoN70lJ0nKD/eLUjp+098K/B0RChg/EwcqtWycvqVjtbyk/lYvD4woe978kbzSOCnu8FT9ZxvEDfdKjS0C0wyjiTXOd+twWyZU/RS5yg+/6Zin7phh6k834cC32yCWBvsYlUPHaiHOV5lgrsPmd8/vnn1/NUnID8vQ8pC9zzrN/zbqcHH93Ouq32tIB2v5N2itQjNJMjOQS9saAXwQXbD9DJeVqTwrlqdG1oGBp6wwP+itb/VazkkFKv8h7+6B5t+JzyuBxi51PQrzwckZtAiq4EIhosq3rtFKtc//QmqMofErFjNMmbXDl1dSOycx/tzuRL/8pUTwRv6oNFm/g8/PDDK4BapMuO5Nl5Zyvyjc+iQzQIwjTUAhF2Qt7e8zz67PYDycNWM679Z7f/qxg9pnpujQbeF9G2NdiixgBBmCAATHAWjFMW7hOae56HEcIN4wRGaZajayH97sZNydLFcfotjaNHfVGOtLZW4NQSEVEiZ8JxoSPpHLlmDBSWFjNGTRnSeK+Xx9lbGCXa5/RElZ4pj6PVQovGOUW8yo9M5IV2ZSpvc1gks6BHHouQ9GiLkxdBMWrQgH384x+vqF8UH77SODumESn9ypdTIq9efowWj3jdXEMnjSP8a9DklUraK60yyco9ESzQQyqVPGIPQfJnE57jJb/R6Ux+9CNvDR99Jg+8acTRgKdUxtiiPNGGbu+QE3rIO/R4RgbJkx6V6z3XGlSgY7RZ+KUe4AmN3r/00kvnaegHH4IKPSN2RxccOTo919NA41lnnVX7CpGZ5yJmZ9G13pky5EXXnIdeoTLIRN7KpQ8ywK/Dc++kLHYhP47Te/gSFJAV/txTrjQCKbyTkTTsR3p8k7U8nP32DA3Ogivv/8M//EPxAmSsbLJVt4D8ydNOuhqJiy++uMoX+Og5eC4/13hGg7KAvpSvkdSoROb0pqesYbUQDw34oCPvk2Hsi070qvQelUV/FsvKjz/otuwgS/yql2SfHhgaUobn0uHTn39p5PT6AuXggW970IMeVI2C/cos3Pvc5z5X8lDutmLVjYFkCAbEMRYgILDdsW6MLXQJjFAxp3UnbBGqbqoW3n7rKqcGwZlAGTeDJ1B5yzdOmnJVGEqgePcZCUEanmGQ7okmNQoMRZmWuosc7IGPHgavojBUZShXOQxeHozn3HPPLcNDB2Erl1HKT9cbTyoMuhkKJbiHHkr97ne/W4c0nstLGRS/OeA9RuSaoepVOMuDDDxTnrzQRw+gIqn4dKRclVQlQYc8OVaVQBo8yj8V2zPOwHsqpnvKVDnwpcxUevqPjtADZEg2+Y2G6QHeVbZ35clGlOV9oEt5e0Y3KqR7ZKd89+Oo6EN5yvUO2lQylcJz6ZXFJpJOZZaWPsmQbpRNdnQnDZAp2TiATNCRoSP0KEMjxXnRjSMVGr/ol6drMiRf9ucdtole9KCP/OmIrcpPWnojG3nQtXI5W2W4x37xRw6ckKFSZclPeWjEJzmgTd3jLPGkvNgFmfqtXnBUZKV89JMDnqX1nh4wOZCXd9GCH3ngG53sK3aDfu9z7HhFi3omD2f0RobSgrzRQz948Vw5ykCjZxpS9JEh/ckX3fwHecgbr1azc8B6FnjwjP3g4173ulcFRfLyPnrRgV68qXfSs0H32Qa79Sy25iAXZfFr5Gw4Lr6Ff0ijzGHzdXYEEIyQCTrJin3Jl76cgS7k4312KrjdsGFDbUCJLzpSvzVCRgHYTt7dFqy6MSAEBALlIYiSwNm+HIRgj3QMqpj+ls8OnQglcBE0hWgQdMkwgVlKIRz5SycNBVAUJajEyDTGTEmUoIJQchy6tJRI+IwpDoCiCNARoSnfQdiMDRiJ93S90UOZ8mQg8mKYut+MWcUmA0pFD8MlDw2fSiSNihGngX55bw74UKZKZSjHu8pV6ePIGCcZyZsxptKTl3SAXtcaQU4gRqnCyMPhHqQyySMOzz1lky99yjsVD6/04zl4Ri/uyRfQlEM6ZyB3MuvmpgIF5MbRAXrQy67IDf9oQQNZk0vSgjwja/yA9HRLXqE3dis/ebE59sIGU9khNoc/5cgr8Cw8sUP5p0yQL3q85xwH3euK344AndLiVf6BclLvwqPfyiMD9pcGHF/QaUILPqQJ8CQ9nnu5gd85Ky+yC90daE169EDeC8jau/S5CNI7pEOzd+XLHvDf9RyQKT6UOXWCaSQ9E6ByvuqKv0bVYGiM1SP+Sb1g9/yGOiewzK6tsbPOizLx0mniE+QP8mPTkZU80IcmQSrn7T8mDPvIC4/SeAfPjvBDb5Gp737Petaz5n+Sw5e5pmffEtYKW/wBWYvEqfqgoydg/MpHxDe+8Y01hu6Z7ijBaPkgzkZRxqUx5o+7jXGHaYJYpPhAOkoGxuwdxuIeJ+ZdBhcBcgwqu2eMnhHY8VGEwZkaRqJEESqaKYxS4ih87HnkIx9Z+XufQ6DgKDAVCC1xkowAj3EervEVmlYD6dGAH3JDk/JSuZWDb2XFMOOc0KZMv+WDrshenuiSxntxMDG+0O5Mjq4d3SEE8kaL+6nA9APK9ts5B0gvLaiIokC8qBQOZUVWkZ/77jm7l7TuQfJXHv7icDh4+UsrvzSU0WH4YRv0SIbok5f0jqRRFtrkRVb4DM/RC8Qhk580cc7ScOB+u5ZHpz96gTS6HLUyRZp6BJGdtJERegDtyoycI6PUFZBX3nV0+v2Wh7Ijnw73vatBkdZvZbGfgE3JQzmO0BJED5sDWryHLuX4La/ow7X70kzzilwFY3yOYTWTHUT/evomQKA3som8vcdXCSp9jxCgelcZ7ALPvv0JrPgI+zl1ffF9ymFrp59+er0XewB66fJkb6L8pz/96eX7IrfIhx9VzlR+EJko+zOf+UztA+a7kODxzDPPLDvZVqy6MUAIRcUZYgYBPmgQBmIx64/V7dwXx4R4jKogGg8ffT3HSCpQhMLo5eMdAomSUzE9l5f0lCsNRdrBkxKNIfoeQbgMgzJVCpE+pZrZwflPjYmz947W1sdTvRtRtbF3kZbKCYnEAvShAX0qSY9+GIL7DnlPK9kUaOgRWsBAEjl0B9eRho/TI0cyyz2IM0llArrJ/cgX5O+ZPCA6AHJ3nd/B1OiXg7zIyfsaWh8uNcqRj4gNr3SrLPfwGjqnQGfMVx748w5bowvv+Y3nXoljd2hRVs8fL/L0TuQs3y4T8C65sS/50V2XrfLoQxo2g3flSC9fv6UBtKYOgPI04oKWNOYgX/k5R9edzuQhb/IIT+Gzy6CDvEK7/B3yzD3odhB0e+pwX5noxFtP45m8QBmhPfAcFuU7hfwBvXggW2f+xQwlAafve/yC+6GfjpVDFpGH52SW+gNGDww1aTA0zM78h2FUvQxBx7HHHluOmW+B6Jm80TflI3VFfXfNDpXLqfNTdKR87/GnnkenoUvg7RsmPvkpwZVexzZjELxVGM6m5s1+4QtfqGX3YK64VZAwBFVnGJWlzsOxzufCehcGk3WGIYiaE+uew/UQWD1zDX4nD0vszeU2Rxsr5iOPHkA9C/I+eK+XNwx2TsdQdM0B93s43cu8557yh9LqNzqDodQ6J19pRkX9mbm9yt7cEeS9UbHnWyWYKz66srWSdDiHefrQiB7lkq+52vgKRgO26epf9eB510/yGw1oncOL+6HHefT25mm7HLs8AunQJF3Shpbh5GrdQLafCEJfygDvKjfXZOvo5SvHQRfO0PlGe/REruRGVpB0nnedL4Iy5YW+2A1ZnnbaafU+ujpCC+Tae67lkfLCizzoZTj/WnsQeKfLOO+pgx3uT3mI/kIvkMFKQF+OIHzL0xG7cz+ymeoGpHGvywPy3iL7mQJfnZa85+g8u7YmydoA57i46B/kM5VTp02e0sdWHK5Dr7Uc1khYTGgRof3H1FFrcSyqszeW9x3hTf6pc/JKeb2udrn1+8qXj/KdrdHhr0C6LpdtwaobgxgTZ9QJtaDFCsfRQtWzEaGXQYTAGGOEQiAxYmnkywl0Y50i5XEKEQrB5b4G4Ha3u11dAyUQdq+c0hKq+13xrqM02zHY6yd5uQ/dGYHyV6MAeeK/K3lzIAM0Ks/Z1g7ZwXVEPXMZxSlLE+DV1gsbN26sxXkjWijeODvbWJA5GTDEEYXUO+7ZE8e78rJqNLx6pnGI3CA6lN4CHIuCohO0hX7lTuWjXOmsALaFgdXCbMF9dpO8vU/uKXNEZnUGZdG1Aw8pQ3mRDdpG1FaLqWIfo1tdZ2Vb/Zx9emKbSRfgffQ4azVtGihAaxD6vGtLjd74uI7tWBRkd1iLwPIOutWT7FmkvKS3EExwY1FbZOLc6YDYVNKAfLuNepZ7zuSURhCUG0i7nJ16dzk79l6vZwFeU36HPNx3SIMmwN80f7/7vfAyhTwc8oscLajcsGFDbV8SGpzpMHoIIlv3YxOQPHMNbNaix9GDrd8Qmi655JKlT3ziE0tve9vb6nfekWfqHL6BHfIzGpHRO65FeCBt0sSm0NBtb4pue9uCLeoZxFFw/LZLsAmXKIYTyspZzKQFhM0xsRwYVwRJEBGOa4xzUhwISGcLgosuuugyDmJL4T35jy5g7bESI+jGsSOBnshAI8UBfvGLX6wN0KwuHt3HcihxwGecccZ8l1BGlkrvngYizpK+rEQF0bk9cVQGBm51Ln2N7mnpcPfddy9DV8FsafGdTZsGokM+9sGx2tbz0JtjqofQY/WtimTlMrptk2CVaRyTbRuArdmRUwT2x3/8x2UDIr3Rxa6oiL3ZGsB7Vu3uueeec1uzcypH4B3bQ9zkJjep+/Yk8j/DaJA/h58oz74vkTfHvc8++1QDjFe8yLs7ZHahIaAXUajNwm5605vWXkGRgUaJLmz9gA4rf2NXVguTqXzjwEBe/iPbSuF/2IJNxn7eEZnTUWzv9NNPr1XfawW2Fr/Dgds/Kz5xkZ+gV/tBsXdboujdq1NWNlsRbu8oW0xMg5HLC6tuDEIwYyYQS951h/bbb7+6DxTB6RAahx4nvlqH2isbJOJQYTg7ldZWBo73ve99cwcHHNiiCIWBTB3T5sDB2QEQtuS9tUBkF6dG1rZd2GOPPWoIThRx85vfvOiLQwuNIg2wh5ON1yJzWzvc7373q+2UbQOw77771n3DeQwTbAfgvgZBfmSmgbWxHR0aBkwPxVYJyrIRnYiXDaBzKqvk45k8HIzfEBynLPp1z+6kKpbeAkeqsRNhoZXOOfzsSaUB4iA1LCI+PRPgcNHORtNwaQDJwX4yhs7Q41qlFDiAhkCDYIsTDY337c9zi1vcoq7xaN8ePDggfOasZ2Wvo6OOOqqGDNLQaqzQYSgBDEEaUgV2rhFVbnRNFuRlQzlDG9n6+vIKRq6oUH/YpIBBXZn6lK1F9BQfox7E/oL4I2V2f/mBD3ygbFYg4r5DoKD+PetZz1roty4PbFHPQEVksBgjHL/1CihAJGPIiIAwuLWQlwotMtWq2gFRZEj4KrdKpIKoPBG4M0V0h+RaGvedV4I8KE4kIZJzTUnOO6pCohPdvZEDwxC6n/Y1yRiohtGfyYg20SvC55Q4eTwYhmGE6c7q8XC43jPGKRLWkHPMHJjo2S6cgQjVfxhw2le5ylVKLzaGQ4cIR8TcPznpQUzljw8y1JtDk54kpymiokfDNbvttls5VMMjKgda0PprmzY301OgAxVMD8nwF77xqwzDQYbFAjtyhi6O2H5LepKiRM5BIwPsWM+K89cD0euxadvVr3714hFE6MpSvgN6FK8nihc9SbojS+/q6dAFOshN3norxpPjnDQEhu/IyPBcdK7R0IvQc9ADX8fqENsTFNqzij0booO1GEaJD5jWTeXSfRoAdhUYPhfQ0LseQIIaebHTBGOLhr4uD2xRYxBghiPxwUSl1TCI6lQEjCeKlC6VaDVQ0QjXpm2UyWlxSMZ6KYFwDXsoL0JPi90hD+VSkvNqhB1lcw6cUdDL2lHgQDmR8BanysFzmu4bz/ZNQdSr4dRQfmPTP3elYfOOdH6TBR45dw0IcEIXXHBBXWs4fIC3UZ1hF45fJC5ythvpVa961Yq+lXW1q12txjg5PY1KL6PDb3zoSXKIHLFdSo888siK0NO4Jap3z1g55y7az7AUfcpDWj0FUR/HyxEb6pLejp+cvgAiY7bkpDflHRuhica8J4KPvn1PMOQmjaErtme4bO+99y5aFqEP35BZPubhT4PnWwCdaRDc09OgG42ZTf30GNi0Hhub10jr0aHBpncaMT1UWGTf61ge5K7np1cHbIdtrSXULXrpgcEUghY+0XA6P6lH3P2IRsJOqOhVR3YGrLoxINDe/RFViV4YN4Z07VU0Y7oqbmdwS5xpxuBUSs5AlGQYAwxdKAMoeZEyOP7VNgAd3gl6lDt1cNsToQFf4cEZLRpYQyhmGEWe9BE6A/Ij+87/crKIo+kOJ/nRJ/httsz1r3/96vWJvAx3xA44WcNIykV3L8u78tYogfc5WU4PX9Jr7PNcj1MkbhdNDtn2x55nnDZO2G+RlUg+9NrJMX8yM3WgcfwiRDIjSw676zYRO6iovgFAyk45sTn8TstJfqkrYLgqw1J6EvgR8UtLVhpb0DC/9rWvreuUEXvY0cHIFRWRP9nHDiPLtUDPa1qn/M696DYwa87W5AF7jD3BzqLfLeoZ9BYWwzF4jPmtshpjhS64VKjNoX90jnNwT+TJAakYX//612tMFbqwk55Q0ZFKtCXAg0YN5I1XR1fa9kaMufMWGKc3dBND60MIaIxuQi9eeqXguDij/E5Z4B0GyhkvAufs+4CPvQEZdyPWAMljSru84/g7OObQ6ow++UkrH/SJ9DVKne7ugKN3aXPtnYDDTj6xCd9bolv5gsDGUJWGVi/DjDK2RsZoQp98ps4f5OF58gq/oIxcB7HRLo9cO3uny9X7kdM6Ng/6IdsgAenUJrcGbIke4iMCZdBXAg768p1PoOyeQEAg5V1p+bTQiN7U250Bq24MMBmhOsfIu7Hr4oriI5jeWKwGETThOkwrFEn6M5BAhaEYNEgfJwCpiNPyVmsM3ptWxMsDymUk3Vh8RPZnNxCnlLFQ/DE09PfKEL7JKQ5HfuQH0mtoYero4khhKj95RcfBVOYdXa753hR0/S1C6O58eb9XSs+mv6fjxGhgT74JGOJimyqmoUhDND5kGzLyvwT+VaoHMGSG35QbeSinNz6RQZdX5IjP8BKenWNj0Unk1J913taxGHH8gYY8Ntrr9NZiUR70Pa0HQM83vvGNa5IL+7JmxDcrgaxhxAxhBYvyuDywVd8MYtQdIiNdIUM5EAa1kqtBbzgcxsZVTFP8VMI8h1S65RTUIc1qW9+UEdqVq2Iv4netsVzD4z5n4MOinhde/MYn2qbv4TdHR5xpeOoI32kYkhbIQvr+HUXZkalKuMiYpQkdrjudHF0vA6Z8pHL3suJEu3OMEwV0hpbuzKVHh0bAh1xDjSqns+8VpoeGnlNPPXU+LOk9Q2Jmr2VNQIeyHJE1WgNyzu/IOz0v6afOazn0RmEdK4PMYxPsempn2wI6jS3SSfSqvPyWBqTTI/CdiA35ZhD7haRbzajJjsJWNQaLgHkM+jAGERTD35Kv+QSrEvqI5sMcYQam65me5TuCWTO98q1jHZuDISBDQb5x6RH4iM1+zPk2bdfaDRDUiCrZoIV1PqRDd8gcOVtPI7DurNcB7CA+KY6fHxQgG340HZ8PSzCTIHNnsZ+VNwBZJeybYS+UEW3V7+w5Yo+N7JGzEoZQan8Vm0bZbdC+IKMxqGejAtYWrvIfFXo2Irzak2QIv56vYx2bwwEHHDC7733vW7tMsrFRQWu/F3tkjaBjdtJJJ833jbFjq/8IcL7ooovm/8gmPdiHiK2zP/dyfx3rCOL/nP3nia202Zb/Kch+SNkvajX7MO0IrBkVYajvnpdKshpmR5RVmzepgB/96Efrn4xsNOUfgty3KZMNm+54xzvODjrooPnmcSrwOtaxEjjzEa3NGwO2qXLa5JBj91efo3dbG4MJREb3vTYcu/DCC+tPRWzH7n34l3/5l9qVl+0JgtjlOtbRweFz9CAQ4b8EuSeffHLdC6RjjzsD1rQxSJSuEsGWOGqNgd0dCUbUbwc/Z70KOx9qIOwc6P9607j85Cc/2Wla1XXs3LCjJcdti+Af//jHdW07YdH9xo0bZx/4wAdqx1R/FmIrdhVZVHfooYfWnya5xz7ZKZuU1nONzDrWsbT00x1KnSF+yW89SQGGbfEzcgL8JR+mh7AzYIv/z2Bz0AiIslQkLZ7oK0JKt2lLIB/RmwoLGheNxI9+9KMqyzMCVbHXsY7NgS2yE9sS2zabPYrUTjvttPoHvRe84AX1j2HScPi69b/0S79U25gbRsr/CHP+bJudQ4aW1vHzjdgX8HnxWfGJAX9lpINPzJb3/d3LE2vaGMgKsxiNMPx2fzWNge8Coi7pL7300vk/CBGWsTaV1v+U+rcglfAXf/EXq4J63gW+jnUsgqEdET2bVEn1FgwN9f80YHvsKQ7eP2QZMvK94Qc/+OlfX04xrfDr+PkDPxQf1wME9sWm4vg9i2/UABgJkXZrguW1xpo2BkEahGC1Ld80yvJe72X4U/cDDzywBJvKp8uf7wfrWMdy4LDZkmDDmL8GIDbZKzJIp1p0B8/+XvziF9cfkusxeH9LAp117PpgCxw9u+DL2E+cf37nmk+DBCg7A9ZswD0f10Brp4I5QEVaCWkwCAq0qN7PeBpBGrfVGyBQgvfOekOwjtWA/Ri7BR+J0xAY9kmkBuxYRU1l1XCwRendS0PANt1fbwjWEWgEQCDMj/ktuGU7eqH8VYYZwXCRhoAd7QzYLj2DdaxjV4PKrWd6m9vcpv76UKPhno/KvTFZxzquqFhvDNaxjlXC/1HvtddeFe3p/WoE+lDSOtZxRcZ6Y7COdawSqkp6ARnWnF6vYx1XVKw3ButYxzrWsY61+4C8jnWsYx3ruKJiNvv/Ab/U1rsVecXCAAAAAElFTkSuQmCC[/img]
Массы играют роль непроницаемых тел, состоящих из скоплений ослабевших молекул и атомов, которые не могут с предыдущей силой отталкивать падающих на них соседних молекул и атомов, что характеризуется похолоданием, снижением возврата энергии.
Другие такие же силы - импульсы, несущиеся на гребнях космических волн, входят через северный и южный полюса поля между тяготеющими массами, которые сталкиваются на плоскости экватора поля, где они раскручивают поле и центробежно отталкивают объёмы тел, отталкивая от общего центра равновесия, р.
(R1)^2-это площадь, на одну сторону которой падают волны через северный полюс, а на эту же площадь, но с противоположной стороны, как на мембрану, падают волны через южный полюс (полушарие). Точка р - это точка равновесия сил магнитных, которые входят по форме конуса с вершиной , упирающейся в центр р, от которого они расходятся центробежно, электрическими волнами. Размерности зависят от принимаемых единиц масштаба (г,кг,т).
14.12.2013г. Пивень Григорий.
Последний раз редактировалось piven 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

12d3
Сообщений: 3347
Зарегистрирован: 02 янв 2009, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение 12d3 » 05 окт 2016, 16:49

Пивень, у меня к вам большая просьба. Вы можете гадить только в одной теме, а не во всех сразу? Заранее спасибо за понимание.
Последний раз редактировалось 12d3 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

piven
Сообщений: 948
Зарегистрирован: 14 янв 2014, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение piven » 05 окт 2016, 17:08

[quote name='12d3' date='05.10.2016, 19:49' post='493010']
Пивень, у меня к вам большая просьба. Вы можете гадить только в одной теме, а не во всех сразу? Заранее спасибо за понимание /quote]
12d3, извините, я думал, что Вас интересует механизм гравитации, ибо массы не имеют силы, способной тянуть. Ньютон признал этот факт, а Вы продолжаете говорить о том, что стало его ошибкой.
Последний раз редактировалось piven 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

12d3
Сообщений: 3347
Зарегистрирован: 02 янв 2009, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение 12d3 » 05 окт 2016, 17:26

piven писал(а):Source of the post 12d3, извините, я думал, что Вас интересует механизм гравитации, ибо массы не имеют силы, способной тянуть.
Если бы меня интересовало ваше мнение по этому вопросу, я бы у вас спросил. А раз не спросил, значит не интересует.
Последний раз редактировалось 12d3 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

Аватар пользователя
Zs1
Сообщений: 506
Зарегистрирован: 25 июн 2012, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение Zs1 » 09 окт 2016, 09:58

Гравитации нет. Есть электрическое поле. Атомы не нейтральны в электрическом поле. Движение в электрическом поле с ускорением создаёт силу инерции. F=MA F=qE F=wqE .
Последний раз редактировалось Zs1 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test

Аватар пользователя
dust1939
Сообщений: 3636
Зарегистрирован: 13 авг 2015, 21:00

Прошу помочь разобраться с вопросом по закону всемирного тяготения

Сообщение dust1939 » 09 окт 2016, 17:25

Zs1 писал(а):Source of the post Гравитации нет. Есть электрическое поле. Атомы не нейтральны в электрическом поле. Движение в электрическом поле с ускорением создаёт силу инерции. F=MA F=qE F=wqE .
Хватит бредить: электрическое поле Земли не соответствует ее гравитации. Незаряженные атомы абсолютно не реагируют на элекртические поля, многократно превосходящие земное э-поле.
Последний раз редактировалось dust1939 27 ноя 2019, 17:55, всего редактировалось 1 раз.
Причина: test


Вернуться в «Альтернативная наука»

Кто сейчас на форуме

Количество пользователей, которые сейчас просматривают этот форум: нет зарегистрированных пользователей и 23 гостей